首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein phosphatase was purified from the stroma of Pea (Pisum sativum L.) chloroplasts that is capable of dephosphorylating synthetic phosphopeptides. Following chromatographic purification of greater than 400-fold, two-dimensional electrophoresis indicated that the stromal protein phosphatase is a 29-kD protein. A similar molecular size was determined for the protein-phosphatase activity using gel-permeation chromatography, indicating that the stromal protein phosphatase is probably a monomer. The purified enzyme was able to dephosphorylate synthetic phosphopeptides, which mimic the thylakoid light-harvesting complex II (LHC-II) N terminus, as well as LHC-II in thylakoid membranes, but did not dephosphorylate the major 64-kD phosphoprotein in the stroma. The stromal protein phosphatase did not discriminate between dephosphorylation of phosphothreonine and phosphoserine residues in synthetic peptide substrates, providing further evidence that this enzyme is distinct from the protein phosphatase localized in thylakoid membranes. The exact physiological role of the stromal protein phosphatase has yet to be determined, but it may function in the dephosphorylation of LHC-II.  相似文献   

2.
The chloroplast compartment enclosed by the thylakoid membrane, the "lumen," is poorly characterized. The major aims of this work were to design a procedure for the isolation of the thylakoid lumen which could be generally used to characterize lumenal proteins. The preparation was a stepwise procedure in which thylakoid membranes were isolated from intact chloroplasts. Loosely associated thylakoid surface proteins were removed, and following Yeda press fragmentation the lumenal content was recovered in the supernatant following centrifugation. The purity and yield of lumenal proteins were determined using appropriate marker proteins specific for the different chloroplast compartments. Quantitative immunoblot analyses showed that the recovery of soluble lumenal proteins was 60-65% (as judged by the presence of plastocyanin), whereas contamination with stromal enzymes was less than 1% (ribulose-bisphosphate carboxylase) and negligible for thylakoid integral membrane proteins (D1 protein). Approximately 25 polypeptides were recovered in the lumenal fraction, of which several were identified for the first time. Enzymatic measurements and/or amino-terminal sequencing revealed the presence of proteolytic activities, violaxanthin de-epoxidase, polyphenol oxidase, peroxidase, as well as a novel prolyl cis/trans-isomerase.  相似文献   

3.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl a/Chl b greater than 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl a/b light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl a/b LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS II alpha from the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS II beta. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

4.
OEE33, a component of the oxygen-evolving enzyme in chloroplasts, normally resides in the thylakoid lumen. In an attempt to study the fate of mistargeted proteins in chloroplasts, we substituted the bipartite transit peptide of OEE33 with that of CAB7, an integral thylakoid-membrane protein. As a result, when imported into isolated chloroplasts, the chimeric protein protein was targeted to the stroma instead of the thylakoid lumen. Whereas the wild-type OEE33 was totally stable for at least 2 h, the chimeric protein was rapidly degraded, with a half-life of 60 min. Degradation of the chimeric protein was stimulated by ATP supplementation. Degradation could also be observed in lysed chloroplasts, in an ATP-stimulated manner. When lysates were fractionated, the proteolytic activity was found to be associated mainly with the stromal fraction. This activity was very effectively inhibited by all tested inhibitors of serine proteases. Western blot analysis demonstrated that the stromal fraction active in degrading the chimeric OEE33 contains ClpC and ClpP, homologues of the regulatory and proteolytic subunits, respectively, of the bacterial, ATP-dependent, serine-type Clp protease.  相似文献   

5.
The nuclear psbY gene (formerly ycf32) encodes two distinct single-spanning chloroplast thylakoid membrane proteins in Arabidopsis thaliana. After import into the chloroplast, the precursor protein is processed to a polyprotein in which each "mature" protein is preceded by an additional hydrophobic region; we show that these regions function as signal peptides that are cleaved after insertion into the thylakoid membrane. Inhibition of the first or second signal cleavage reaction by enlargement of the -1 residues leads in each case to the accumulation of a thylakoid-integrated intermediate containing three hydrophobic regions after import into chloroplasts; a double mutant is converted to a protein containing all four hydrophobic regions. We propose that the overall insertion process involves (i) insertion as a double-loop structure, (ii) two cleavages by the thylakoidal processing peptidase on the lumenal face of the membrane, and (iii) cleavage by an unknown peptidase on the stromal face on the membrane between the first mature protein and the second signal peptide. We also show that this polyprotein can insert into the thylakoid membrane in the absence of stromal factors, nucleoside triphosphates, or a functional Sec apparatus; this effectively shows for the first time that a multispanning protein can insert posttranslationally without the aid of signal recognition particle, SecA, or the membrane-bound Sec machinery.  相似文献   

6.
Sec-independent protein translocation by the maize Hcf106 protein   总被引:3,自引:0,他引:3  
The bacterial Sec and signal recognition particle (ffh-dependent) protein translocation mechanisms are conserved between prokaryotes and higher plant chloroplasts. A third translocation mechanism in chloroplasts [the proton concentration difference (DeltapH) pathway] was previously thought to be unique. The hcf106 mutation of maize disrupts the localization of proteins transported through this DeltapH pathway in isolated chloroplasts. The Hcf106 gene encodes a receptor-like thylakoid membrane protein, which shows homology to open reading frames from all completely sequenced bacterial genomes, which suggests that the DeltapH pathway has been conserved since the endosymbiotic origin of chloroplasts. Thus, the third protein translocation pathway, of which HCF106 is a component, is found in both bacteria and plants.  相似文献   

7.
Many thylakoid proteins are cytosolically synthesized and have to cross the two chloroplast envelope membranes as well as the thylakoid membrane en route to their functional locations. In order to investigate the localization pathways of these proteins, we over-expressed precursor proteins in Escherichia coli and used them in competition studies. Competition was conducted for import into the chloroplast and for transport into or across isolated thylakoids. We also developed a novel in organello method whereby competition for thylakoid transport occurred within intact chloroplasts. Import of all precursors into chloroplasts was similarly inhibited by saturating concentrations of the precursor to the OE23 protein. In contrast, competition for thylakoid transport revealed three distinct precursor specificity groups. Lumen-resident proteins OE23 and OE17 constitute one group, lumenal proteins plastocyanin and OE33 a second, and the membrane protein LHCP a third. The specificity determined by competition correlates with previously determined protein-specific energy requirements for thylakoid transport. Taken together, these results suggest that thylakoid precursor proteins are imported into chloroplasts on a common import apparatus, whereupon they enter one of several precursor-specific thylakoid transport pathways.  相似文献   

8.
The distribution of six isoforms of protein kinase C (PKC) in seromucous acinar cells of rat submandibular gland was examined and their translocation from the cytosolic- to the membrane fraction after different stimuli investigated. Western blotting, immunostaining with isoform-specific antibodies and scanning densitometry showed that PKC-alpha and epsilon were distributed fairly evenly between the cytosol and membranes in resting cells, while isoforms- beta, delta and zeta were all predominantly localized (over 80%) in membranes. PKC-gamma was not detected. PKC-alpha was mobilized to the membrane fraction by the phorbol ester, TPA, but not by the phosphoinositide-coupled agonists carbachol, methoxamine and substance P (SP). PKC-epsilon was translocated by TPA and carbachol but not by SP or methoxamine. Biochemical assay of total PKC confirmed that cytosolic enzyme activity was significantly reduced by TPA and carbachol to 29% and 75% respectively of control levels. These results suggest that muscarinic regulation of the mucosecretory response in the rat submandibular gland may be mediated by the PKC-epsilon isoform.  相似文献   

9.
Chloroplasts and cyanobacteria contain genes encoding polypeptides homologous to some subunits of the mitochondrial respiratory NADH-ubiquinol oxidoreductase complex (NADH dehydrogenase). Nothing is known of the role of the NADH dehydrogenase complex in photosynthesis, respiration, or other functions in chloroplasts, and little is known about the specific roles of the perhaps 42 subunits of this complex in the mitochondrion. Inactivation of a gene for subunit 4 (ndhD-2, ndh4) of this complex in the cyanobacterium Synechocystis 6803 has no effect on photosynthesis, judging from the rate of photoautotrophic growth of mutant cells, but the mutant's respiratory rate is about 6 times greater than that of wild-type cells. Respiratory electron transport activity in cyanobacteria is associated both with photosynthetic thylakoid membranes and with the outer cytoplasmic membrane of the cell. Cytoplasmic membranes of mutant cells have much greater NADH-dependent cytochrome reductase activity than preparations from wild-type cells; this activity remains at wild-type levels in isolated thylakoid membranes. It is suggested that the 56.6-kD product of ndhD-2 is not essential for the activity of a cytoplasmic membrane-bound NADH dehydrogenase but that it regulates the rate of electron flow through the complex, establishing a link between this ndh gene and respiration. The activity of the molecularly distinct thylakoid-bound NADH dehydrogenase is apparently unaffected by the loss of ndhD-2.  相似文献   

10.
Proteins of cyanobacteria may be transported across one of two membrane systems: the typical eubacterial cell envelope (consisting of an inner membrane, periplasmic space, and an outer membrane) and the photosynthetic thylakoids. To investigate the role of signal peptides in targeting in cyanobacteria, Synechococcus sp. strain PCC 7942 was transformed with vectors carrying the chloramphenicol acetyltransferase reporter gene fused to coding sequences for one of four different signal peptides. These included signal peptides of two proteins of periplasmic space origin (one from Escherichia coli and the other from Synechococcus sp. strain PCC 7942) and two other signal peptides of proteins located in the thylakoid lumen (one from a cyanobacterium and the other from a higher plant). The location of the gene fusion products expressed in Synechococcus sp. strain PCC 7942 was determined by a chloramphenicol acetyltransferase enzyme-linked immunosorbent assay of subcellular fractions. The distribution pattern for gene fusions with periplasmic signal peptides was different from that of gene fusions with thylakoid lumen signal peptides. Primary sequence analysis revealed conserved features in the thylakoid lumen signal peptides that were absent from the periplasmic signal peptides. These results suggest the importance of the signal peptide in protein targeting in cyanobacteria and point to the presence of signal peptide features conserved between chloroplasts and cyanobacteria for targeting of proteins to the thylakoid lumen.  相似文献   

11.
Polyphenol oxidases (PPOs) are nuclear-encoded chloroplast proteins that are targeted to the thylakoid lumen by a bipartite presequence. The N-terminal part of this sequence is removed by a stromal processing peptidase (SPP), and the resulting intermediate is translocated across the thylakoid and processed to the mature protein. A 4800-fold-purified SPP processed a PPO precursor (pPPO) at a site identical to that occurring in organelle. The in vitro product of SPP action on pPPO was further processed and translocated by thylakoids. This SPP processed other precursors but was inactive toward those of light-harvesting chlorophyll binding proteins. The enzyme appeared to be a metalloendopeptidase, like previously reported SPPs. However, it differed in substrate specificity, apparent size, and, most significantly, cleavage site of pPPO. Whereas the processing sites of lumen proteins determined so far were relatively distant from the hydrophobic core of the thylakoid targeting domain, pPPO was cleaved immediately before this domain. Cleavage removed the twin arginine motif characteristic of thylakoid targeting domains of lumen proteins, which are translocated by the DeltapH-dependent pathway. The possible significance of these observations to PPO translocation mechanism is discussed. It is suggested that several SPPs may exist in chloroplasts with preferences for different subsets of precursors.  相似文献   

12.
In the murine thymus, the stroma forms microenvironments that control different steps in T cell development. To study the architecture of such microenvironments and more particularly the nature of communicative signals in lympho-stromal interaction during T cell development, we have employed the phage antibody display technology, with the specific aim of isolating thymic stromal cell-specific single-chain antibodies from a semisynthetic phage library. A subtractive approach using intact, mildly fixed thymic fragments as target tissue and lymphocytes as absorber cells generated monoclonal phages (MoPhabs) detecting subsets of murine thymic stromal cells. In the present paper we report on the reactivity of single-chain antibodies derived from three MoPhabs, TB4-4, TB4-20, and TB4-28. While TB4-4 and TB4-20 are both epithelium specific, TB4-28 detects an epitope expressed on both epithelial- and mesenchymal-derived stromal cells. TB4-4 reacts with all cortical epithelial cells and with other endoderm-derived epithelia, but this reagent leaves the majority of medullary epithelial cells unstained. In contrast, MoPhab TB4-20 detects both cortical and medullary thymic epithelial cells, as well as other endoderm- and ectoderm-derived epithelial cells. Cross-reaction of single-chain antibodies to human thymic stromal cells shows that our semisynthetic phage antibody display library, in combination with the present subtractive approach, permits detection of evolutionary conserved epitopes expressed on subsets of thymic stromal cells.  相似文献   

13.
It has previously been found that Tic110, an integral protein of the chloroplast inner envelope membrane, is a component of the chloroplastic protein import apparatus. However, conflicting reports exist concerning the topology of this protein within the inner envelope membrane. In this report, we provide evidence that indicates that the large (>90-kDa) hydrophilic domain of Tic110 is localized within the chloroplast stroma. Trypsin, a protease that cannot penetrate the permeability barrier of the inner envelope membrane, degrades neither Tic110 nor other proteins exposed to the stromal compartment but is able to digest proteins exposed to the intermembrane space between the two envelope membranes. Previous reports indicating that trypsin is able to degrade Tic110 were influenced by incomplete quenching of protease activity. When trypsin is not sufficiently quenched, it is able to digest Tic110, but only after chloroplasts have been ruptured. It is therefore necessary to employ adequate quenching protocols, such as the one reported here, whenever trypsin is utilized as an analytical tool. Based on a stromal localization for the majority of Tic110, we propose that this protein may be involved in the recruitment of stromal factors, possibly molecular chaperones, to the translocation apparatus during protein import.  相似文献   

14.
The CtpA protein in the cyanobacterium Synechocystis 6803 is a C-terminal processing protease that is essential for the assembly of the manganese cluster of the photosystem II complex. When fused to different chloroplast-targeting transit peptides, CtpA can be imported into isolated spinach chloroplasts and is subsequently translocated into the thylakoid lumen. Thylakoid transport is mediated by the cyanobacterial signal peptide which demonstrates that the protein transport machinery in thylakoid membranes is functionally conserved between chloroplasts and cyanobacteria. Transport of CtpA across spinach thylakoid membranes is affected by both nigericin and sodium azide indicating that the SecA protein and a transthylakoidal proton gradient are involved in this process. Saturation of the Sec-dependent thylakoid transport route by high concentrations of the precursor of the 33-kDa subunit of the oxygen-evolving system leads to a strongly reduced rate of thylakoid translocation of CtpA which demonstrates transport by the Sec pathway. However, thylakoid transport of CtpA is affected also by excess amounts of the 23-kDa subunit of the oxygen-evolving system, though to a lesser extent. This suggests that the cyanobacterial protein is capable of also interacing with components of the deltapH-dependent route and that transport of a protein across the thylakoid membrane may not always be restricted to a single pathway.  相似文献   

15.
Chloroplast material active in photosynthetic electron transport has been isolated from Scenedesmus acutus (strain 270/3a). During homogenization, part of cytochrome 553 was solubilized, and part of it remained firmly bound to the membrane. A direct correlation between membrane cytochrome 553 and electron transport rates could not be found. Sonification removes plastocyanin, but leaves bound cytochrome 553 in the membrane. Photooxidation of the latter is dependent on added plastocyanin. In contrast to higher plant chloroplasts, added soluble cytochrome 553 was photooxidized by 707 nm light without plastocyanin present. Reduced plastocyanin or cytochrome 553 stimulated electron transport by Photosystem I when supplied together or separately. These reactions and cytochrome 553 photooxidation were not sensitive to preincubation of chloroplasts with KCN, indicating that both redox proteins can donate their electrons directly to the Photosystem I reaction center. Scenedesmus cytochrome 553 was about as active as plastocyanin from the same alga, whereas the corresponding protein from the alga Bumilleriopsis was without effect on electron transport rates. It is suggested that besides the reaction sequence cytochrome 553 leads to plastocyanin leads to Photosystem I reaction center, a second pathway cytochrome 553 leads to Photosystem I reaction center may operate additionally.  相似文献   

16.
The distribution of the progesterone receptor (PR) was investigated immunocytochemically in female reproductive tracts of rats during the estrous cycle and early pregnancy through use of an anti-PR monoclonal antibody. PR was localized predominantly in the nuclei of epithelial, stromal, and muscle cells in the uterus and vagina during the estrous cycle. In the uterus, the nuclei of epithelial cells were stained intensively at diestrus, while the PR staining of the stromal cells was more intense at proestrus than at any other stage of the cycle. PR expression during the cycle in muscle cells of the myometrium was similar to that in the endometrial stromal cells. In the vagina, however, PR expression during the cycle was approximately the same among epithelial, stromal, and muscle cells, the nuclei of which were stained deeply at proestrus. Ovariectomy at various stages of the cycle altered the PR expression appearing in the uterus and vagina during the cycle. In ovariectomized rats, estrogen increased the PR immunoreaction of various types of cells examined in the uterus and vagina except for the uterine epithelial cells. The reaction of these uterine epithelial cells was decreased by estrogen but was increased by progesterone given after estrogen; however, progesterone given alone reduced the reaction. In the epithelial and stromal cells of the uterus, intensity of the staining was increased after mating, reaching maximum on Day 3 of pregnancy, and then decreased on Day 4 (day of implantation), while in epithelial and stromal cells of the vagina the staining remained weak during early pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To express and characterize the function of a plant ion channel gene in plant cells, it is necessary to establish a model system that lacks the endogenous channel activity and can be genetically transformed. Patch-clamp techniques were used to survey voltage-dependent K+ channel activities in different cell types of tobacco plants. Interestingly, mesophyll cells lacked the inward K+ current found in guard cells. A transgene containing the inward K+ channel gene KAT1 from Arabidopsis was constructed and expressed in the mesophyll cells of transgenic tobacco plants. Expression of the KAT1 gene produced a large voltage-dependent inward current across the plasma membrane of mesophyll protoplasts. The KAT1 current was carried by K+ and activated at voltage more negative than -100 mV. This K+ current had a single-channel conductance of 6-10 pS and was highly sensitive to TEA, Cs+ and Ba2+. This study represents the first example in which a plant ion channel gene is functionally expressed and studied in plant cells. Tobacco mesophyll cells will provide a useful model for functional characterization of inward K+ channel genes from higher plants.  相似文献   

18.
We describe the identification of the first immunophilin associated with the photosynthetic membrane of chloroplasts. This complex 40 kDa immunophilin, designated TLP40 (thylakoid lumen PPIase), located in the lumen of the thylakoids, was found to play a dual role in photosynthesis involving both biogenesis and intraorganelle signalling. It originates in a single-copy nuclear gene, is made as a precursor of 49.2 kDa with a bipartite lumenal targeting transit peptide, and is characterized by a structure including a cyclophilin-like C-terminal segment of 20 kDa, a predicted N-terminal leucine zipper and a potential phosphatase-binding domain. It can exist in different oligomeric conformations and attach to the inner membrane surface. It is confined predominantly to the non-appressed thylakoid regions, the site of protein integration into the photosynthetic membrane. The isolated protein possesses peptidyl-prolyl cis-trans isomerase protein folding activity characteristic of immunophilins, but is not inhibited by cyclosporin A. TLP40 also exerts an effect on dephosphorylation of several key proteins of photosystem II, probably as a constituent of a transmembrane signal transduction chain. This first evidence for a direct role of immunophilins in a photoautotrophic process suggests that light-mediated protein phosphorylation in photosynthetic membranes and the role of the thylakoid lumen are substantially more complex than anticipated.  相似文献   

19.
Targeting of chloroplast proteins to the thylakoid membrane is analogous to bacterial secretion, and much of what we know has been learned from secretory mechanisms in Escherichia coli. However, chloroplasts also use a delta pH-dependent pathway to target thylakoid proteins, at least some of which are folded before transport. Previously, this pathway seemed to have no cognate in bacteria, but recent results have shown that the HCF106 gene in maize encodes a component of this pathway and has bacterial homologues. This delta pH-dependent pathway might be an ancient conserved mechanism for protein translocation that evolved before the endosymbiotic origin of plastids and mitochondria.  相似文献   

20.
Oxygen transport in thylakoid membranes of spinach chloroplasts (Spinacia oleracea) has been studied by observing the collisions of molecular oxygen with spin labels, using line broadening electron paramagnetic resonance (EPR) spectroscopy. Stearic acid spin labels were used to probe the local oxygen diffusion-concentration product. The free radical moiety was located at various distances from the membrane surface, and collision rates were estimated from linewidths of the EPR spectra measured in the presence and absence of molecular oxygen. The profile of the local oxygen diffusion-concentration product across the membrane determined at 20 degrees C demonstrates that this product, at all membrane locations, is higher than the value measured in water. From the profile of the oxygen diffusion-concentration product, the membrane oxygen permeability coefficient has been estimated using the procedure developed earlier (W.K. Subczynski, J.S. Hyde, A. Kusumi, Proc. Natl. Acad. Sci. USA 86 (1989) 4474-4478). At 20 degrees C, the oxygen permeability coefficient for the lipid portion of the thylakoid membrane was found to be 39.5 cm s-1. This value is 20% higher than the oxygen permeability coefficient of a water layer of the same thickness as the thylakoid membrane. The high permeability coefficient implies that the oxygen concentration difference across the thylakoid membrane generated under the illumination of the leaf by saturating actinic light is negligible, smaller than 1 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号