共查询到17条相似文献,搜索用时 62 毫秒
1.
新型搅拌桨用于黄原胶溶液气液传质的计算流体力学模拟 总被引:1,自引:0,他引:1
采用计算流体力学(CFD)方法对高黏度非牛顿流体黄原胶水溶液(质量分数2%)中对称锯齿双斜叶涡轮搅拌桨(SPT)的搅拌效果进行模拟,并与传统的圆盘涡轮搅拌桨(DT)进行对比。通过多重参考系方法解决搅拌桨区域的运动问题,采用Eulerian-Eulerian模型模拟气液二相流动,气泡聚并和破裂过程通过群落平衡方程计算。结果发现,在高黏度体系中SPT气液传质混合性能优于DT。与DT相比,在考察的转速和表观气速下,SPT搅拌功率消耗降低35%左右,氧传质效率提高超过24%。 相似文献
2.
3.
The mixing process in a stirred tank of 0.476m diameter with single, dual and triple 3-narrow blade hydrofoil CBY impellers was numerically simulated by using computational fluid dynamics (CFD) package FLU-ENT6.1. The multi-reference frame (MRF) and standard k-ε turbulent model were used in the simulation. The shaft power and the mixing time predicted by CFD were in good agreement with the experiment. The effects of tracer feeding and detecting positions on mixing time were investigated. The results are of importance to the optimum design of industrial stirred tank/reactors. 相似文献
4.
5.
6.
对一种自吸式反应器的气液分散性能进行了实验研究,并采用计算流体力学(CFD)ANSYS CFX中对自吸式反应器在600,800,1 000,1 200 r/min 4种转速条件下气液二相流的流场、局部气含率及整体气含率进行了数值模拟,并采用Higbie溶质渗透模型模拟研究了反应器的容积传质系数。研究结果表明:气液二相流场与高速摄像机拍摄的结果相同,成对称分布;自吸式反应器的局部气含率分布均匀,上下分布良好,整体气含率的模拟结果与实验结果一致,实验值和模拟值误差为5.1%;局部容积传质系数分布良好,气体出口附近较好,容积传质系数模拟值与实验值变化趋势一致。 相似文献
7.
双层组合桨搅拌槽内气液微观分散特性 总被引:1,自引:0,他引:1
采用双电导电极探针法对双层组合桨搅拌槽内气液相界面积特性进行了实验研究,考察了通气量、搅拌转速和桨组合对槽内相界面积的影响。结果表明:对于上层桨为上翻斜叶桨和下层桨为凹叶桨的组合,随着通气量的增加,搅拌槽内大部分区域的相界面积增大,但在槽底区域减小。随着搅拌转速的增加,在叶轮区域的相界面积增加明显,而在槽底和液面区域基本不变化。上下层桨的分散能力和气体分布器结构和操作条件密切相关。对于近壁管式气体分布器搅拌槽,在较低通气量下,上层桨对气液分散起着主要作用,而在高通气量下,下层桨的作用增强,起主要作用。带圆盘的搅拌桨对气体具有良好的阻缓作用,不同气速下均具有优异的气液分散能力。 相似文献
8.
翼形桨搅拌槽内混合过程的数值模拟 总被引:8,自引:0,他引:8
采用FLUENT软件的多重参考系(MRF)及标准k-ε模型,将速度场与浓度场方程分开进行求解,对单层轴流式三叶CBY翼形桨搅拌槽内的混合过程进行了数值模拟,所得的混合时间的模拟结果与实验值相吻合。同时采用数值模拟的方法研究了不同的示踪剂加料点、监测点位置及操作条件对混合时间的影响规律;模拟结果表明,混合过程主要由搅拌槽内的流体流动所控制,混合时间与示踪剂加料点及监测点位置密切相关。上述的研究结果对于工业搅拌反应器的优化具有一定的参考意义。 相似文献
9.
多层组合桨搅拌槽内气-液分散特性的研究 总被引:17,自引:4,他引:17
在直径为0,476m的椭圆底搅拌槽中,采用由六叶半椭圆管叶盘式涡轮桨(HEDT)及四叶宽叶翼型桨的上提(WHU)及下压(WHD)操作组合的六种不同的三层桨,研究了气-液两相体系中的通气功率变化及气含率特性,获得不同桨型的通气搅拌功率及气含率的关联式;结果表明,底桨为HEDT的组合桨通气功率下降幅度最小,相同输入功率时气含率最高,其次为WHD,WHU为底桨时气液分散性能最差。因此,适用于气液两相操作的优化组合桨应以HEDT为底桨。此研究结果可为工业用多层组合桨气液搅拌反应器的设计提供参考。 相似文献
10.
在直径为0.48 m的椭圆底搅拌槽中,采用包括半椭圆(HEDT)及抛物线(PDT)形叶片的4种盘式涡轮桨,研究了叶片形状对气液两相体系中临界分散、通气功率和气含率的影响. 结果表明,由载气到气泛测得的泛点比气泛到载气测得的泛点明显滞后;比较相同条件下PDT桨与HEDT桨的通气功率和气含率,相同通气准数时,PDT桨的相对功率消耗(Pg/P0)较高,通常大于0.75,且受通气量影响较小;功率消耗相同时,在较宽气量范围内PDT的气含率较HEDT高约5%. PDT桨在相同气量时达到气液分散所需的功率略低,推荐用于工业气液搅拌反应器中. 相似文献
11.
12.
13.
14.
Two experimentally determined sets of impeller boundary conditions were used to simulate the flow generated by a pitched blade turbine in a cylindrical baffled tank. Use of these two sets of boundary conditions in simulations with two different off bottom clearances led to the conclusion that the flow generated by a pitched blade impeller cannot be successfully predicted without considering the impeller location. Correct prediction of velocity fields in the tank required the correct specification of velocity boundary conditions. Successful prediction of the turbulent energy distribution required proper specification of the turbulence boundary conditions. There was almost no interaction between the velocity and turbulence fields. The turbulet kinetic energy dissipation rate was at a maximum close to the impeller in both geometries. Within this region the average dissipation rate was five and a half times greater that the average dissipation rate in the tank. 相似文献
15.
气液旋流分离器工作时,两相混合物从入口管切向进入圆柱形筒体开始分离。所以当入口管和筒体的结构发生变化时,对整个旋流分离带来的影响是直接的。旋流分离之后的气相,是经过溢流管离开体系的,因此当溢流管的结构改变时,气相的最终分离也会受到影响。从溢流管的半径、插入深度、筒体的半径与高度四个方面出发进行数值模拟,每个影响因子设计了六组平行的仿真模拟实验。 相似文献
16.
Oxygen transfer in aqueous solutions of CMC, xanthan gum, and polyacrylamide in a vessel equipped with a helical ribbon screw impeller and a multi-orifice ring sparger was studied. The KLa values obtained were comparable to those reported for radial flow impellers, but they are more representative of the oxygen transfer in the bulk of the liquid because of a more homogeneous mixing and absence of dead zones. Dimensionless correlations including the effect of the physical properties of the fluids, and those of operating conditions were developed. A dimensionless correlation for each fluid is proposed. 相似文献