首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
The golden films with various subwavelength hole arrays on the film surface are designed and fabricated on glass substrate by electron beam lithograply (EBL), focused ion beam (FIB), and reactive ion etching (RIE), respectively. The influences of the hole array symmetry and the hole shape on the light-enhanced transmission through the films are observed and simulated. The experimental results show that when the array lattice constant and the hole diameter are the same in the different array structures which are 1 μm and 350 nm respectively, the square hole arrays exhibit two transmission peaks at 1170 nm and 1580 nm with the transmissivities of 3% and 6%, respectively, while the hexagonal hole arrays exhibit an enhanced peak of 14% at 1340 nm; when the lattice constant and the duty cycle are the same for different array stucture,.the transmission peaks are different for different hole shapes, which are at 763 nm with transmissivity of 12% for rectangular holes and at 703 nm with the one of 9%, respectively The numerical simulation results by using the transfer matrix method (TMM) are consistent with the observed results.  相似文献   

2.
Novel molecular material ,1-benzothiazoly-3-pheny1-pyrazoline (BTPP) was found to function as bright blue light emitting dye in organic electroluminescent device, and its optical and electric characteristics were investigated. This heterovyclic compound exhibited good characteristics of blue photoluminescence and electroluminescence,which had the emission peak at 450nm .The single layer light-emitting devices using BTPP as light -emitting material dispersed in poly(N-vinylcarbazole)(PVK) and double layer ones using PBD as hole block layer above the light-emitting layer were fabricated using conventional spin-casting and vaccum vapour deposition methods. The introduction of PBD has enhanced electron injection and luminance efficiency, compared with the single layer LEDs.  相似文献   

3.
Hybrid white micro-pillar structure light emitting diodes(LEDs)have been manufacture utilizing blue micro-LEDs arrays integrated with 580 nm CIS((CuInS2-ZnS)/ZnS)core/shell quantum dots.The fabricated hybrid white micro-LEDs have good electrical properties,which are manifested in relatively low turn-on voltage and reverse leakage current.High-quality hybrid white light emission has been demonstrated by the hybrid white micro-LEDs after a systemic optimization,in which the corresponding color coordinates are calculated to be(0.3303,0.3501)and the calculated color temperature is 5596 K.This result indicates an effective way to achieve high-performance white LEDs and shows great promise in a large range of applications in the future including micro-displays,bioinstrumentation and visible light communication.  相似文献   

4.
Inorganic perovskites(Cs Pb X3(X=I,Br,Cl))have broad prospection in the field of high-definition displaying due to its excellent optoelectronic characteristics.The vacuum deposition process possesses advantages and competitiveness in the industrialized production.However,the performance of light emitting diodes(LEDs)based on vacuum-deposited is incredibly low.Herein,we proposed a heating-assisted vacuum deposition(HAVD)method to construct inorganic perovskite LEDs(Pe LEDs)with enhanced performance.The roughness and crystallinity of perovskite film were improved by regulating the heating treatment of substrates.And the perovskite film exhibited largely rise in luminescence,with decreasing defect density.Consequently,with the optimized temperature,the green Pe LEDs exhibited 100-fold improvement of external quantum efficiency(EQE)with the luminance of up to 11941 cd/m2,and the full width at half-maximum(FWHM)of the electroluminescence(EL)spectra was decreased from 25 to 17 nm.At the same time,the red and blue Pe LEDs also exhibited obvious enhancement in EQE and luminance by HAVD method,and both the FWHM of EL spectra dropped below 20 nm,exhibiting excellent high color purity.HAVD strategy has a huge potential to be a new commonly used method for low-cost fabrication of displays and lighting.  相似文献   

5.
We have designed an air-bridged PhC microcavity with high sensitivity and a high quality factor.The structure parameters of the microcavity are optimized by three-dimensional finite-difference time-domain method. We compare the performance of a silicon-on-insulator PhC microcavity and an air-bridged PhC microcavity,and analyze the effect of the thickness of the slab and the radius of the defect hole on the performance of the air-bridged PhC microcavity.For a thinner slab and a larger defect hole,the sens...  相似文献   

6.
Aligned SnS nanowires arrays were grown via a simple chemical vapor deposition method.As-synthesized SnS nanowires are single crystals grown along the[111]direction.The single SnS nanowire based device showed excellent response to near infrared lights with good responsivity of 267.9 A/W,high external quantum efficiency of 3.12×10^4%and fast response time.Photodetectors were built on the aligned SnS nanowire arrays,exhibiting a light on/off ratio of 3.6,and the response and decay time of 4.5 and 0.7 s,respectively,to 1064 nm light illumination.  相似文献   

7.
A design method for light-emitting diode (LED) array is proposed to achieve a good uniform illumination distribution on target plane. By using random walk algorithm, the basic LED array modules are optimized ftrstly. The optimized basic arrays can generate uniform illumination distribution on their target plane. The optimized basic LED array mod- ules can be integrated into a large LED array module with more than tens of LEDs. In the large array, we can select a sub-array with K LEDs (K〉7), which can produce the good uniform illumination distribution. By this way, we design two LED arrays which consist of 21 and 25 LEDs, respectively. The 21-LED array and 25-LED array can generate uniform illumination distributions with the uniformities of 95% and 90%, respectively.  相似文献   

8.
鞠晶  周玉琴  董刚强 《半导体学报》2014,35(9):092001-5
We studied the infrared transmission properties of gold films on ordered two-dimensional nonclose- packed polystyrene (PS) colloidal crystal. The gold films consist of gold half-shells on the PS spheres and gold film with 2D arrays of holes on the glass substrate. An extraordinary optical transmission phenomenon could be found in such a structure. Simulations with the finite-difference time-domain method were also employed to get the transmission spectra and electric field distribution. The transmission response of the samples can be adjusted by controlling the thickness of the gold films. Angle-resolved measurements were performed using polarized light to obtain more information about the surface plasmon polariton resonances of the gold films. As the angle changes, the transmission spectra change a lot. The transmission spectra of p-polarized light have quite different properties compared to those of s-polarized light.  相似文献   

9.
A GaN vertical light emitting diode(LED)with a current block layer(CBL)was investigated.Vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL were fabricated.Optical and electrical tests were carried out.The results show that the light output power of vertical LEDs with a non-ohmic contact CBL and with a silicon dioxide CBL are 40.6%and 60.7%higher than that of vertical LEDs without a CBL at 350 mA,respectively.The efficiencies of vertical LEDs without a CBL,with a non-ohmic contact CBL and with a silicon dioxide CBL drop to 72%,78%and 85.5%of their maximum efficiency at 350 mA,respectively. Moreover,vertical LEDs with a non-ohmic contact CBL have relatively superior anti-electrostatic ability.  相似文献   

10.
ZnS films were deposited on porous Si(PS) substrates with different porosities by pulsed laser deposition. The photolumi-nescence spectra of the samples were measured to study the effect of substrate porosity on luminescence properties of ZnS/porous Si composites. After deposition of ZnS films,the red photoluminescence peak of porous Si shows a slight blueshift compared with as-prepared porous Si samples. With an increase of the porosity,a green emission at about 550 nm was observed which may be ascribed to the defect-center luminescence of ZnS films,and the photoluminescence of ZnS/porous Si composites is very close to white light. Good crystal structures of the samples were observed by x-ray diffraction,showing that ZnS films were grown in preferred orientation. Due to the roughness of porous Si surface,some cracks appear in ZnS films,which could be seen from scanning electron microscope images.  相似文献   

11.
Photonic-crystal (PhC)-assisted light extraction is a promising method for ultrahigh efficiency, planar light-emitting diodes (LEDs). However, modeling of such structures is challenging due to the variety of their parameters and the heavy computational burden they represent. We present a thorough theoretical discussion of the optimization of PhC LEDs, which relies both on approximate treatments and on rigorous 3-D calculations. Two material systems (GaAs and GaN) are investigated, leading to quite different optimal regimes. Notably, it appears that besides the properties of the 2-D PhC itself, design of the vertical structure plays a major role in optimization  相似文献   

12.
GaN-based LEDs with photonic crystal (PhC) patterns on an n- and a p-GaN layer by nano-imprint lithography (NIL) are fabricated and investigated. At a driving current of 20 mA on Transistor Outline (TO)-can package, the light output power of the GaN-based LED with PhC patterns on an n- and a p-GaN layer is enhanced by a factor of 1.30, and the wall-plug efficiency is increased by 24%. In addition, the higher output power of the LED with PhC patterns on the n- and p-GaN layer is due to better crystal quality on n-GaN and higher scattering effect on p-GaN surface using PhC pattern structure.  相似文献   

13.
为了提高发光二极管(LED)的光提取效率,并比较不同光栅形状对LED光提取效率的影响,采用严格耦合波法优化了与矩形、等腰三角形、等腰梯形光栅分别集成的倒装LED,使它们出光面透射率达到最优,随后使用有限时域差分法模拟计算它们的光提取效率。经过模拟计算和理论分析可得3种不同结构LED最优光栅参量(光栅占空比f、光栅周期p、光栅厚度h)和过渡层厚度d分别是:f=0.35, p=150nm, h=80nm, d=190nm; f=0.45, p=175nm, h=80nm, d=190nm; f=0.7, p=150nm, h=80nm, d=190nm。结果表明,3种最优的LED结构在波长0.4μm~0.5μm范围内,矩形光栅倒装LED和等腰三角形光栅倒装LED出光面透射率相同,等腰梯形光栅倒装LED出光面透射率最低; 由于光透射率最低,导致等腰梯形光栅倒装LED光提取效率较低,最高仅为58.07%,但是由于等腰三角形光栅倒装LED特殊的光栅形状加上高的光透射率,其光提取效率可以达到77.75%。此研究可以为制备高光提取效率LED提供理论方法指导。  相似文献   

14.
The current study reports a novel inorganic/organic light-emitting diode (LED), consisting of zinc oxide (ZnO) nanorod arrays and poly(2-methoxy, 5-octoxy)-1,4-phenylenevinylene (MOPPV). ZnO nanorod arrays passivated using polyacrylamide (PAM) with 70 nm diameter were successfully prepared by a simple polymer-assisted chemical method. Enhancement of the ZnO defect emission is caused by PAM passivation, as observed in photoluminescence spectra. Infrared absorption spectra reveal that PAM is chemically or physically adsorbed on the surfaces of ZnO nanorod arrays. The electroluminescence (EL) spectrum shows bluish light at 406 nm from ZnO transition emission, and light emission with center at 600 nm from exciton emission in MOPPV. The potential EL mechanism is electron transition to zinc vacancy in PAM/ZnO nanorod arrays, and exciton radiation luminescence in MOPPV film. This novel PAM/ZnO-MOPPV device may be helpful to promote development of multicolor LEDs.  相似文献   

15.
Organic-inorganic hybrid light emitting diodes (LEDs) were fabricated by incorporating cadmium sulphide (CdS) nanoparticles in hole transporting layer and light emitting materials of a polymer LED. The CdS nanoparticles with size of 10 nm were synthesized by precipitation technique. The LEDs incorporated with the CdS nanoparticles show a reduction in turn on voltage and luminance. When the nanoparticles are incorporated in a suitable fluorene based light emitting polymer, the luminance is increased along with the decrease of turn on voltage.  相似文献   

16.
InGaN-based microhole array light-emitting diodes (LEDs) with hole diameters (d) of 3-15 /spl mu/m were fabricated using self-aligned etching. The effects of size on the device characteristics, including current density-voltage and light output-current density, were measured and compared with those of conventional broad-area (BA) LEDs fabricated from the same wafer. The electrical characteristics of the devices are similar to those of conventional BA LEDs. The light output from the microhole array LEDs increases with d up to 7 /spl mu/m. However, the light output declined as d increased further, perhaps because of the combination of the enhancement in extraction efficiency caused by the large surface areas provided by the sidewalls and the decrease in area of light generation by holes in the microhole array LEDs. The ray tracing method was used with a two-dimensional model in TracePro software. The findings indicate that an optimal design can improve the light output efficiently of the microhole array LEDs.  相似文献   

17.
为了提高大功率LED的光抽取效率,采用溶胶-凝胶法、水热生长法的两步生长工艺在大功率红光发光二极管(LEDs)表面制作ZnO纳米棒阵列结构进行研究.利用ZnO纳米棒形成的光波导,ZnO纳米棒侧面为辅助出光面,提高了LED芯片的光输出效率.测试表明,所生长的ZnO纳米棒分布密度均匀,形貌一致;与未制作ZnO纳米棒前相比较...  相似文献   

18.
We propose the hybrid integration of an air hole photonic crystal (PhC) structure with a high /spl Delta/ (0.75%) single-mode silica waveguide to achieve an ultracompact high efficiency 90/spl deg/ bend for transverse-magnetic polarized light. Diffraction from the periodic boundary between the PhC and silica waveguide regions is shown to seriously degrade the optical efficiency of the bend. A microgenetic algorithm (/spl mu/GA) combined with a two-dimensional finite-difference time-domain method is used to modify the PhC and its boundary layer to suppress this diffraction which in turn maximizes bend efficiency. The final optimized structure has a 99.4% bend efficiency at a wavelength of 1.55 /spl mu/m and occupies an area of only 27 /spl times/ 27 /spl mu/m.  相似文献   

19.
A facile method to fabricate three‐dimensional branched ZnO/MgO nanowire heterostructures and their application as the efficient light‐extraction layer in light‐emitting diodes are reported. The branched MgO nanowires are produced on the hydrothermally‐grown ZnO nanowires with a small tapering angle towards the tip (≈6°), by the oblique angle flux incidence of MgO. The structural evolution during the growth verifies the formation of the MgO nanoscale islands with strong (111) preferred orientation on very thin (5–7 nm) MgO (110) layer. The MgO nanobranches, then grown on the islands, are polycrystalline consisting of many grains oriented in specific directions of <200> and <220>, supported by the nucleation theory. The LEDs with the branched ZnO/MgO nanowire arrays show a remarkable enhancement in the light output power by 21% compared with that of LEDs with pristine ZnO nanowires. Theoretical calculations using a finite‐difference time‐domain method reveal that the nanostructure is very effective in breaking the wave‐guiding mode inside the ZnO nanowires, extracting more light especially in radial direction through the MgO nanobranches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号