首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
为了提高非劣解向Pareto最优前沿收敛的速度及进一步提高解的精度,在设计了一种新的杂交算子并改进了NSGA-Ⅱ的拥挤操作的基础上,提出了一种基于分级策略的多目标演化算法。数值实验表明,新算法能够非常高效地处理高维的最优前沿为凸的、非凸的和不连续前沿的多目标测试函数,得到的非劣解具有很好的分布性质。但在处理高维的具有太多局部最优前沿的多峰函数时极易陷入局部最优前沿。  相似文献   

2.
多目标差分演化算法研究综述   总被引:1,自引:0,他引:1  
多目标差分演化算法是一种简单有效的演化算法,已引起学术界的广泛关注,并在许多领域得到应用。首先描述了差分演化算法的基本思想;接着分析了有代表性的多目标差分演化算法,并给出了改进多目标差分演化算法的一些措施;然后讨论了多目标差分演化算法的性能度量指标,并介绍了多目标差分演化算法的一些应用领域;最后,指出了多目标差分演化算法今后的研究方向。  相似文献   

3.
韩敏  刘闯  邢军 《自动化学报》2014,40(3):431-438
提出一种用于求解多目标优化问题的基于膜系统理论的演化算法. 受膜系统理论的功能和处理化合物方式的启发,设计了求解多目标优化问题的演化操作. 此外,在表层膜中,引入了非支配排序和拥挤距离两种机制改善算法的搜索效率. 采用ZDT(Zitzler-Deb-Thiele)和DTLZ(Deb-Thiele-Laumanns-Zitzler)多目标问题对所提算法进行测试,所提算法求得的候选解既能较好地逼近真实Pareto前沿,又能满足非支配解集多样性的要求. 仿真结果表明,所提方法求解多目标优化问题是可行和有效的.  相似文献   

4.
一种基于树结构排序的多目标优化演化算法   总被引:1,自引:0,他引:1  
多目标优化演化算法(MOEA)是一种新的解多目标优化问题(MOP)的有效算法。针对大多数MOEA采用的表示解优劣的Ranking技术存在的问题,该文提出了一种新的表示方法———树结构来表示解的关系。实验证明这种方法很好地达到Pareto最优,有效地保持解的多样性,而且收敛速度快。  相似文献   

5.
基于正交设计的多目标演化算法   总被引:16,自引:0,他引:16  
提出一种基于正交设计的多目标演化算法以求解多目标优化问题(MOPs).它的特点在于:(1)用基于正交数组的均匀搜索代替经典EA的随机性搜索,既保证了解分布的均匀性,又保证了收敛的快速性;(2)用统计优化方法繁殖后代,不仅提高了解的精度,而且加快了收敛速度;(3)实验结果表明,对于双目标的MOPs,新算法在解集分布的均匀性、多样性与解精确性及算法收敛速度等方面均优于SPEA;(4)用于求解一个带约束多目标优化工程设计问题,它得到了最好的结果——Pareto最优解,在此之前,此问题的Pareto最优解是未知的.  相似文献   

6.
基于Pareto-ε优胜的自适应快速多目标演化算法   总被引:1,自引:0,他引:1  
王江晴  杨勋 《计算机应用》2010,30(4):997-999
在多目标优化领域,如何快速地为决策者提供合理、可行的解决方案尤为重要,为此,给出了多目标优化问题的一种新解法。定义了一种Pareto-ε优胜关系的概念,将此概念引入多目标优化问题中,设计了一种新的基于ε-优胜的自适应快速多目标演化算法。计算机仿真表明,该算法可以明显改善求解多目标优化问题时的寻优过程,能适应实际应用环境下快速、有效的决策要求。  相似文献   

7.
演化算法因其内在的并行行,在求解多目标优化问题时具有独特的优势。本文介绍多目标演化算法的基本原理,并详细讨论基于Pareto最优概念的多目标演化算法。  相似文献   

8.
多目标优化的演化算法   总被引:57,自引:2,他引:57  
谢涛  陈火旺  康立山 《计算机学报》2003,26(8):997-1003
近年来.多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点.多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域.该文在比较与分析多目标优化的演化算法发展的历史基础上,介绍基于Pareto最优概念的多目标演化算法中的一些主要技术与理论结果,并具体以多目标遗传算法为代表,详细介绍了基于偏好的个体排序、适应值赋值以及共享函数与小生境等技术.此外,指出并阐释了值得进一步研究的相关问题.  相似文献   

9.
通过在目标空间中利用目标本身信息估算个体k最近邻距离之和,作为个体的密度信息,根据个体的密度信息对群体中过剩的非劣解进行逐个去除,以便更好地维护解的多样性,由此给出了一种基于个体密度估算的多目标优化演化算法IDEMOEA。用这个算法对几个典型的多目标优化函数进行测试。测试结果表明,算法IDEMOEA求解多目标优化问题是行之有效的。  相似文献   

10.
吴亚丽  徐丽青 《控制与决策》2012,27(8):1127-1132
提出一种基于粒子群算法的改进多目标文化算法并用于求解多目标优化问题.算法中群体空间采用多目标粒子群优化算法进行演化;信念空间通过对形势知识、规范化知识和历史知识的重新定义使之符合多目标优化问题;信念空间和群体空间的交互通过自适应的接受操作和影响操作来实现.若干多目标标准测试函数的仿真结果表明,改进多目标文化算法能够在保持Pareto解集多样性的同时具有较好的均匀性和收敛性.  相似文献   

11.
在多目标进化算法的基础上,提出了一种基于云模型的多目标进化算法(CMOEA).算法设计了一种新的变异算子来自适应地调整变异概率,使得算法具有良好的局部搜索能力.算法采用小生境技术,其半径按X条件云发生器非线性动态地调整以便于保持解的多样性,同时动态计算个体的拥挤距离并采用云模型参数来估计个体的拥挤度,逐个删除种群中超出的非劣解以保持解的分布性.将该算法用于多目标0/1背包问题来测试CMOEA的性能,并与目前最流行且有效的多目标进化算法NSGA-II及SPEA2进行了比较.结果表明,CMOEA具有良好的搜索性能,并能很好地维持种群的多样性,快速收敛到Pareto前沿,所获得的Pareto最优解集具有更好的收敛性与分布性.  相似文献   

12.
演化算法是求解多目标优化问题(MOP)重要而有效的方法,而应用演化策略、技巧是改善解性能的重要途径。论文叙述了多目标优化问题的有关概念,结合已有算法中的方法,设计了基于两种交叉操作相互结合的多目标演化算法(MOEAHC),该算法不仅具有较高的计算效率,而且能够保持解的多样性分布。测试结果表明该算法的良好性能。  相似文献   

13.
一种基于决策图贝叶斯网络的强度Pareto进化算法   总被引:3,自引:0,他引:3  
提出了一种基于决策图贝叶斯网络的强度Pareto进化算法,该算法把贝叶斯概率模型结合到多目标进化算法中,通过构造和学习网络来替代传统进化算法中的交叉重组和变异等遗传操作,避免对大量参数的人工设置和重要构造块的破坏.求解多目标背包问题的仿真结果表明,所提算法可以快速收敛到较好的Pareto前沿,有很强的鲁棒性.  相似文献   

14.
在多目标最优化问题中,如何求解一组均匀散布在前沿界面上的有效解具有重要意义.MOEA?D是最近出现的一种杰出的多目标进化算法,当前沿界面的形状是某种已知的类型时,MOEA?D使用高级分解的方法容易求出均匀散布在前沿界面上的有效解.然而,多目标优化问题的前沿界面的形状通常是未知的.为了使MOEA?D能求出一般多目标优化问题的均匀散布的有效解,利用幂函数对目标进行数学变换,使变换后的多目标优化问题的前沿界面在算法的进化过程中逐渐接近希望得到的形状,提出了一种求解一般的多目标优化问题的MOEA?D算法的权重设计方法,并且讨论了经过数学变换后前沿界面的保距性问题.采用建议的权重设计方法,MOEA?D更容易求出一般的多目标优化问题均匀散布的有效解.数值结果验证了算法的有效性.  相似文献   

15.
Pareto强度值演化算法求解约束优化问题   总被引:34,自引:0,他引:34       下载免费PDF全文
周育人  李元香  王勇  康立山 《软件学报》2003,14(7):1243-1249
提出了一种求解约束函数优化问题的方法.它不使用传统的惩罚函数,也不区分可行解和不可行解.新的演化算法将约束优化问题转换成两个目标优化问题,其中一个为原问题的目标函数,另一个为违反约束条件的程度函数.利用多目标优化问题中的Pareto优于关系,定义个体Pareto强度值指标以便对个体进行排序选优,根据Pareto强度值排序和最小代数代沟模型设计出新的实数编码遗传算法.对常见测试函数的数值实验证实了新方法的有效性、通用性和稳健性,其性能优于现有的一些演化算法.特别是对于一些既有等式约束又有不等式约束的复杂非线性规划问题,该算法获得了更高精度的解.  相似文献   

16.
基于新模型的动态多目标优化进化算法   总被引:1,自引:1,他引:1  
在动态多目标优化中,各目标通常相互冲突,其最优解往往有无穷多个,如何在时间连续发生变化的情况下依然能求出分布均匀且数量多的Pareto最优解供决策者选择十分重要.对动态多目标优化问题连续变化的时间变量区间进行了任意划分,在得到的每个时间子区间上把动态多目标优化问题近似为静态多目标优化问题,进而在每个子区间上定义了种群的静态序值方差和静态密度方差,然后把目标个数任意的动态多目标优化问题转化成一个双目标静态优化问题.在给出的一种能自动检测时间变化的自检算子下,提出一种新的动态多目标优化进化算法,并且证明了算法的收敛性.计算机仿真表明新算法对动态多目标优化问题求解十分有效.  相似文献   

17.
基于生态策略的动态多目标优化算法   总被引:1,自引:0,他引:1  
动态多目标优化问题(dynamic multi-objective optimization problems, DMOP)的目标函数、约束条件或者问题的相关参数随时间变化,是多目标优化领域非常重要的研究难题,传统方法难以很好地追踪其变化的Pareto前沿.针对动态多目标优化问题特点,提出了一种基于生态策略的动态多目标优化算法(dynamic multi-objective optimization algorithm based on ecological strategy, ESDMO).各种群可以采取不同的进化策略应对外部环境变化,捕食种群与被捕食群体间的竞争也促进种群不断提高生存力.受此启发,采用了一种多种群协同进化机制与强化学习策略相结合的协同进化计算模型.该算法定义了一种环境自检算子用于检测环境的变化,不同的种群采取不同的生态策略来应对动态环境变化.经过各种类型的动态多目标优化问题测试,实验结果表明所提出的算法具有更好的解集多样性、均匀性和分布性,验证了该算法对于解决动态多目标优化问题是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号