共查询到20条相似文献,搜索用时 62 毫秒
1.
四旋翼是一种欠驱动、强耦合的可垂直起降的飞行器,为了实现其能够以设定速度跟踪空间轨迹,设计了一种基于非线性制导算法的轨迹跟踪控制方法。该方法分为了导引与控制两部分组成,导引部分以任务轨迹与期望速度为输入量通过非线性制导算法输出当前四旋翼的期望加速度,控制部分以得到的期望加速度为输入量采用串级PID算法对四旋翼进行姿态控制,从而实现四旋翼保持设定速度对任务轨迹的跟踪。仿真结果表明,所提方法能够实现四旋翼对复杂任务轨迹的精确跟踪,二维复杂轨迹跟踪距离偏差不超过±0.6m,速度偏差不超过2m/s;三维复杂轨迹除了受自身控制力限制的飞行段外,跟踪距离偏差基本控制在±4m以内,速度偏差不超过2m/s。 相似文献
2.
李忠林 《计算机测量与控制》2021,29(3):151-156
考虑到四旋翼飞行器的传统内外环控制策略依赖时标分离假设,稳定性分析复杂,并且控制参数选取困难的缺点,提出了一种与传统内外环控制策略不同的轨迹跟踪控制器;首先将四旋翼飞行器数学模型进行相应的变换,以分解为高度、偏航角和纵横向三个级联的子系统,再使用终端滑模控制方法设计高度和偏航角子系统的控制器,使两个子系统的状态误差可以在有限时间内收敛到原点,之后基于变量非线性变换设计纵横向子系统的控制器,分析了闭环系统稳定性,证明了所设计的轨迹跟踪控制器可以保证闭环系统跟踪误差渐近稳定到原点,最后仿真实验的结果验证了所设计的控制器的有效性。 相似文献
3.
为克服目标被短时间遮挡的跟踪问题,在基于图像信息的跟踪算法中增加轨迹约束条件,构成基于图像处理和轨迹预测的目标跟踪算法。首先分别介绍基于图像信息的目标跟踪算法和常见的轨迹预测方法,然后介绍基于图像处理和轨迹预测的目标跟踪算法。实验结果表明,基于图像处理和轨迹预测的目标跟踪算法能够有效地克服目标被遮挡时的跟踪问题。 相似文献
4.
5.
《计算机应用与软件》2017,(7)
针对视频跟踪中存在的目标飘移问题,提出基于双向多轨迹判定的跟踪方法。首先,在一定时间间隔中分别使用纹理、颜色,以及光照不变量特征的三种组件跟踪器,对目标进行正向跟踪。然后,以正向跟踪结果作为初始位置,进行相应反向跟踪。通过分析成对正向反向轨迹,提取几何相似性、循环量和外观相似性,并计算各跟踪器轨迹准确性分数。最后,选择准确性分数最高的跟踪器的正向跟踪轨迹作为最终的跟踪结果。实验结果表明:与几种传统跟踪方法相比,提出的双向多轨迹判定跟踪方法通过融合不同的特征信息,跟踪性能显著提升。 相似文献
6.
研究一类受扰非线性系统的最优输出跟踪控制问题.给出了有限时域最优输出跟踪控制律的近似设计算法.首先将求解受扰非线性系统最优跟踪控制问题转换为求解状态向量与伴随向量耦合的非线性两点边值问题,然后利用逐次逼近方法构造序列将其转化为求解两个解耦的线性微分方程序列问题.通过迭代求解伴随向量的序列,可得到由解析的线性前馈-反馈控制部分和伴随向量的极限形式的非线性补偿部分组成的最优输出跟踪控制律.利用参考输入降维观测器和扰动降维观测器,解决了前馈控制的物理可实现问题.最后仿真结果表明了该方法的有效性. 相似文献
7.
8.
针对三自由度全驱动船舶存在模型不确定和未知外部环境扰动的情况,设计出一种基于非线性增益递归滑模的船舶轨迹跟踪动态面自适应神经网络控制方法.该方法综合考虑船舶位置和速度误差之间关系设计递归滑模面,引入神经网络对船舶模型不确定部分进行逼近,设计带σ-修正泄露项的自适应律对神经网络逼近误差与外界环境扰动总和的界进行估计,并应用一种非线性增益函数构造动态面控制律,选取李雅普诺夫函数证明了该控制律能够保证轨迹跟踪闭环系统内所有信号的一致最终有界性.最后,基于一艘供给船进行仿真验证,结果表明,船舶轨迹跟踪响应速度快、精度高,所设计控制器对系统模型参数摄动及外界扰动具有较强的鲁棒性. 相似文献
9.
提出一种基于视频的车辆检测,跟踪和轨迹生成算法.该算法由改进的车辆检测方法,快速跟踪算法和新的车辆轨迹生成算法3部分组成.基于区域和车辆间的相互关系,在视频序列中,车辆被视为可自主运动团块.在对该团块实现有效跟踪及获取运动轨迹的基础上,运用相关的数学手段可获得团块其它运动信息.在高速公路上的实验结果表明,该车辆检测,跟踪算法切实可行,轨迹生成技术可用于交通流检测. 相似文献
10.
11.
为了获取交通视频中车辆的运动轨迹,提供道路动态交通信息,提出一种基于Yolo3目标检测和KCF目标预测相结合,关联历史轨迹预测结果和检测结果的长时间多目标车辆跟踪算法;对采用机器视觉获取的车辆轨迹非平滑现象,提出通过Savitzky-Golay滤波器对原始的车辆轨迹进行平滑优化。对比测试场景中车辆轨迹优化前后,优化后的轨迹在保留原有车辆运动特征的前提下,改善了轨迹平滑性,提供的动态交通信息更能反映车辆真实运动状况。 相似文献
12.
With the proliferation of mobile computing, the ability to index efficiently the movements of mobile objects becomes important. Objects are typically seen as moving in two-dimensional (x, y) space, which means that their movements across time may be embedded in the three-dimensional (x, y, t) space. Further, the movements are typically represented as trajectories, sequences of connected line segments. In certain cases, movement is restricted; specifically, in this paper, we aim at exploiting that movements occur in transportation networks to reduce the dimensionality of the data. Briefly, the idea is to reduce movements to occur in one spatial dimension. As a consequence, the movement occurs in two-dimensional (x, t) space. The advantages of considering such lower-dimensional trajectories are that the overall size of the data is reduced and that lower-dimensional data is to be indexed. Since off-the-shelf database management systems typically do not offer higher-dimensional indexing, this reduction in dimensionality allows us to use existing DBMSes to store and index trajectories. Moreover, we argue that, given the right circumstances, indexing these dimensionality-reduced trajectories can be more efficient than using a three-dimensional index. A decisive factor here is the fractal dimension of the network—the lower, the more efficient is the proposed approach. This hypothesis is verified by an experimental study that incorporates trajectories stemming from real and synthetic road networks.*A short version of this paper appeared in the proceedings of the 11th ACM GIS Symposium, 2003. 相似文献
13.
14.
In this paper, an iterative learning control strategy is presented for a class of nonlinear time-varying systems, the timevarying parameters are expanded into Fourier series with bounded remainder term. The backstepping design technique is used to deal with system dynamics with non-global Lipschitz nonlinearities and the approach proposed in this paper solves the non-uniform trajectory tracking problem. Based on the Lyapunov-like synthesis, the proposed method shows that all signals in the closed-loop system remain bounded over a pre-specified time interval [0, T ]. And perfect non-uniform trajectory tracking of the system output is completed. A typical series is introduced in order to deal with the unknown bound of remainder term. Finally, a simulation example shows the feasibility and effectiveness of the approach. 相似文献
15.
针对机器人手臂动态模型中存在动态不确定性问题,提出一种结合径向基函数神经网络(RBFNN)和自适应边界控制的机械臂轨迹跟踪方法;利用RBF神经网络在线学习系统中现有的结构化和非结构化不确定性,近似补偿未知动态部分;利用自适应边界来估计非结构化不确定性上的未知边界和神经网络重建误差;通过加权矩阵产生的李雅普诺夫函数证明了该系统具有渐进稳定性;利用三自由度机械臂进行实验,结果表明,相比FFNN控制器,提出的控制器的跟踪误差改进了3~7倍,稳态误差改进了100~1 000倍. 相似文献
16.
模糊学习控制在SCARA机器人轨迹跟踪中的应用 总被引:2,自引:0,他引:2
模糊学习控制以模糊控制提供反馈机制为主体,辅以迭代学习控制提供前馈补偿机制,来实现对期望轨迹的完全跟踪.把模糊学习控制应用于SCARA机器人的轨迹跟踪.仿真试验表明,该方法具有简单实用、跟踪精度高、学习速度快等优点. 相似文献
17.
We study the problem of converting a trajectory tracking controller to a path tracking controller for a nonlinear non-minimum phase longitudinal aircraft model. The solution of the trajectory tracking problem is based on the requirement that the aircraft follows a given time parameterized trajectory in inertial frame. In this paper we introduce an alternative nonlinear control design approach called path tracking control. The path tracking approach is based on designing a nonlinear state feedback controller that maintains a desired speed along a desired path with closed loop stability. This design approach is different from the trajectory tracking approach where aircraft speed and position are regulated along the desired path. The path tracking controller regulates the position errors transverse to the desired path but it does not regulate the position error along the desired path. First, a trajectory tracking controller, consisting of feedforward and static state feedback, is designed to guarantee uniform asymptotic trajectory tracking. The feedforward is determined by solving a stable noncausal inversion problem. Constant feedback gains are determined based on LQR with singular perturbation approach. A path tracking controller is then obtained from the trajectory tracking controller by introducing a suitable state projection. 相似文献
18.
动态场景的外形或表观在很大程度上往往受到一个潜在低维动态过程的控制。基于视频序列之间的时间相干特性,引入一种称为自编码(autoencoder)的特殊双向深层神经网络,采用CRBM(continuous restricted Boltzmann machine)的网络结构,用来学习序列图像的低维流形结构。将autoencoder 用于人体步态序列的实验表明,该方法能提供从高维视频帧到具有一定物理意义过程的低维序列的映射,并能从低维描述中恢复高维图像序列。 相似文献
19.
20.
As location data are widely available to portable devices, trajectory tracking of moving objects has become an essential technology for most location-based services. To maintain such streaming data of location updates from mobile clients, conventional approaches such as time-based regular location updating and distance-based location updating have been used. However, these methods suffer from the large amount of data, redundant location updates, and large trajectory estimation errors due to the varying speed of moving objects. In this paper, we propose a simple but effcient online trajectory data reduction method for portable devices. To solve the problems of redundancy and large estimation errors, the proposed algorithm computes trajectory errors and finds a recent location update that should be sent to the server to satisfy the user requirements. We evaluate the proposed algorithm with real GPS trajectory data consisting of 17201 trajectories. The intensive simulation results prove that the proposed algorithm always meets the given user requirements and exhibits a data reduction ratio of greater than 87% when the acceptable trajectory error is greater than or equal to 10 meters. 相似文献