首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The developing nervous system is extremely sensitive to ethanol, and exposure often produces a condition known as the fetal alcohol syndrome. Although mechanisms underlying developmental ethanol toxicity have long been sought, they remain poorly understood. In this study, we examined the ability of the cell death repressor gene bcl-2 to protect against ethanol neurotoxicity. Transgenic mice overexpressing bcl-2 in neurons were exposed to ethanol vapor on postnatal days 4 and 5, which is the peak period of vulnerability of cerebellar Purkinje cells to ethanol. While exposure of wild-type animals to ethanol resulted in significant loss of Purkinje cells by P5, similar exposure of homozygous and heterozygous transgenics had no effect on the number of these neurons. This study suggests that bcl-2 can protect neurons from ethanol neurotoxicity and that modulation of cell death effector or repressor gene products may play a significant role in developmental ethanol neurotoxicity.  相似文献   

2.
Bcl-2 functions as a death repressor molecule in an evolutionarily conserved cell death pathway. To further explore the role of Bcl-2 in development, we assessed its pattern of expression during murine embryogenesis. Immunohistochemical analysis demonstrates that Bcl-2 is widely expressed early in mouse fetal development in tissues derived from all three germ layers and that this expression becomes restricted with maturation. Within epithelium, the E12.5 lung bud demonstrates a proximal to distal gradient of Bcl-2 expression which is enhanced by E18.5. Bcl-2 is expressed throughout the intestinal epithelium through E14.5, but by E18.5 only cells in the crypts and lower villi express Bcl-2. In the mesoderm-derived kidney, Bcl-2 is expressed in both the ureteric bud and metanephric cap tissue at E12.5. Tubular structures also express Bcl-2, although overall levels drop as the kidney matures. Retinal neuroepithelial cells uniformly express Bcl-2 until cells begin to differentiate and then display the topographic distribution maintained into adulthood. The developing limb provides a clear example where Bcl-2 is restricted to zones of cell survival; Bcl-2 is expressed in the digital zones but not in the interdigital zones of cell death. The wide distribution of Bcl-2 in the developing mouse suggests that many immature cells require a death repressor molecule or that Bcl-2 may have roles beyond regulating developmental cell death.  相似文献   

3.
Velocardiofacial syndrome (VCFS) and DiGeorge syndrome (DGS) are characterized by a wide spectrum of abnormalities, including conotruncal heart defects, velopharyngeal insufficiency, craniofacial anomalies and learning disabilities. In addition, numerous other clinical features have been described, including frequent psychiatric illness. Hemizygosity for a 1.5-3 Mb region of chromosome 22q11 has been detected in >80% of VCFS/DGS patients. It is thought that a developmental field defect is responsible for many of the abnormalities seen in these patients and that the defect occurs due to reduced levels of a gene product active in early embryonic development. Goosecoid-like ( GSCL ) is a homeobox gene which is present in the VCFS/DGS commonly deleted region. The mouse homolog, Gscl, is expressed in mouse embryos as early as E8.5. Gscl is related to Goosecoid ( Gsc ), a gene required for proper craniofacial development in mice. GSCL has been considered an excellent candidate for contributing to the developmental defects in VCFS/DGS patients. To investigate the role of Goosecoid-like in VCFS/DGS etiology, we disrupted the Gscl gene in mouse embryonic stem cells and produced mice that transmit the disrupted allele. Mice that are homozygous for the disrupted allele appear to be normal and they do not exhibit any of the anatomical abnormalities seen in VCFS/DGS patients. RNA in situ hybridization to mouse embryo sections revealed that Gscl is expressed at E8.5 in the rostral region of the foregut and at E11.5 and E12.5 in the developing brain, in the pons region and in the choroid plexus of the fourth ventricle. Although the gene inactivation experiments indicate that haploinsufficiency for GSCL is unlikely to be the sole cause of the developmental field defect thought to be responsible for many of the abnormalities in VCFS/DGS patients, its localized expression during development could suggest that hemizygosity for GSCL, in combination with hemizygosity for other genes in 22q11, contributes to some of the developmental defects as well as the behavioral anomalies seen in these patients. The mice generated in this study should help in evaluating these possibilities.  相似文献   

4.
The homozygous disruption of the mouse AP-2 gene yields a complex and lethal phenotype that results from defective development of the neural tube, head, and body wall. The severe and pleiotropic developmental abnormalities observed in the knockout mouse suggested that AP-2 may regulate several morphogenic pathways. To uncouple the individual developmental mechanisms that are dependent on AP-2, we have now analyzed chimeric mice composed of both wild-type and AP-2-null cells. The phenotypes obtained from these chimeras indicate that there is an independent requirement for AP-2 in the formation of the neural tube, body wall, and craniofacial skeleton. In addition, these studies reveal that AP-2 exerts a major influence on eye formation, which is a critical new role for AP-2 that was masked previously in the knockout mice. Furthermore, we also have uncovered an unexpected influence of AP-2 on limb pattern formation; this influence is typified by major limb duplications. The range of phenotypes observed in the chimeras displays a significant overlap with those caused by teratogenic levels of retinoic acid, strongly suggesting that AP-2 is an important component of the mechanism of action of this morphogen.  相似文献   

5.
6.
Msx genes, homeobox-containing genes, have been isolated as homologues of the Drosophila msh gene and are thought to play important roles in the development of chick or mouse limb buds. We isolated two Msx genes, Msx1 and Msx2, from regenerating blastemas of axolotl limbs and examined their expression patterns using Northern blot and whole mount in situ hybridization during regeneration and development. Northern blot analysis revealed that the expression level of both Msx genes increased during limb regeneration. The Msx2 expression level increased in the blastema at the early bud stage, and Msx1 expression level increased at the late bud stage. Whole mount in situ hybridization revealed that Msx2 was expressed in the distal mesenchyme and Msx1 in the entire mesenchyme of the blastema at the late bud stage. In the developing limb bud, Msx1 was expressed in the entire mesenchyme, while Msx2 was expressed in the distal and peripheral mesenchyme. The expression patterns of Msx genes in the blastemas and limb buds of the axolotl were different from those reported for chick or mouse limb buds. These expression patterns of axolotl Msx genes are discussed in relation to the blastema or limb bud morphology and their possible roles in limb patterning.  相似文献   

7.
Some of the developmental defects characteristic of congenital or experimental hypothyroidism are also observed in children or experimental animals prenatally exposed to ethanol, suggesting that a subset of neurological defects attributable to ethanol exposure are produced by interfering with thyroid hormone action. In this article, we tested whether an ethanol treatment regimen known to produce neurological damage in rats can alter the expression of the mRNAs encoding the thyroid hormone receptor isoforms (TR alpha-1, TR alpha-2, and TR beta-1) in the fetal rat brain neocortex and hippocampus. Rats were fed an ethanol-containing diet beginning on gestational day (G) 6 and continuing until sacrifice on G15, G17, or G21; controls included animals pair-fed a liquid control diet or fed lab chow. Ethanol selectively reduced the expression of TR alpha-1 mRNA in the neocortex and hippocampus on G21, compared with pair-fed and control fetuses. In contrast, pair-feeding selectively reduced TR alpha-2 mRNA in both neocortex and hippocampus on G21, and increased TR beta-1 mRNA on G17. These data support the hypothesis that ethanol may interfere with thyroid hormone action during fetal brain development. In addition, these data indicate that ethanol and pair-feeding exert independent effects on thyroid hormone receptor expression in the developing brain.  相似文献   

8.
Using in situ hybridization and immunohistochemistry the expression of, respectively, prepro-galanin (pre-pro-GAL) mRNA and GAL receptor-1 mRNA, as well as GAL-like and GAL message-associated peptide-like immunoreactivities, were studied in rats from embryonic day 14 (E14) to postnatal day 1. GAL expression was observed already at E14 in trigeminal and dorsal root ganglion neurons and at E15 in the sensory epithelia in developing ear, eye, and nose, as well as at E19 during bone formation. Also, GAL receptor-1 mRNA was expressed in the sensory ganglia of embryos but appeared later than the ligand. These findings suggest that GAL and/or GAL message-associated peptide may have a developmental role in several sensory systems and during bone formation.  相似文献   

9.
Extract made from hippocampus of rat pups exposed prenatally to an ethanol-supplemented diet was found to contain more neurotrophic activity at postnatal day 21 than that from animals exposed to control diets, when quantified in a dorsal root ganglion bioassay. This apparent upregulation was specific to hippocampal extract (cerebellar and forebrain/midbrain extracts were also assessed), and to this age (P1, P7, P14 and P60 extracts were also tested). It was suggested that this upregulation may be indicative of, or secondary to, trauma resulting from fetal ethanol exposure. It is speculated that such departures from the normal developmental timetable could contribute to anomalies seen in the fetal alcohol syndrome.  相似文献   

10.
Disturbed sleep regulation is often observed in neonates of women who drank heavily during pregnancy. It is unknown if (and how) an occasional drink affects fetal sleeping behavior. In 28 near-term pregnant women we examined the effects on fetal behavioral state organization of two glasses of wine (0.25 g of ethanol/kg of maternal body weight). Simultaneous 2-h recordings of fetal heart rate and body, eye, and breathing movements were made on two successive days, once without alcohol exposure and once during maternal alcohol consumption. The study was standardized for time of day and fetal sleep state, i.e., the start of recording was either during quiet sleep (n = 16) or during active sleep (n = 12). Alcohol intake reduced fetal eye movements, disorganized behavioral state organization (rapid eye movement sleep was affected in particular), and suppressed fetal breathing activity almost completely. Modest maternal alcohol intake affects fetal behavioral state organization, which reflects an immediate effect on fetal brain function.  相似文献   

11.
12.
13.
We examined the expression of Zic1, Zic2, and Zic3 genes in the mouse embryo by means of in situ hybridization. Zic genes were found as a group of genes coding for zinc finger proteins that are expressed in a restricted manner in the adult mouse cerebellum. We showed that the genes are the vertebrate homologues of Drosophila odd-paired, which may play an essential role in parasegmental subdivision and in visceral mesoderm development. The expression of the three Zic genes was first detected at gastrulation in a spatially restricted manner. At neurulation, the expression became restricted to the dorsal neural ectoderm and dorsal paraxial mesoderm. During organogenesis, the three genes were expressed in specific regions of several developing organs, including dorsal areas of the brain, spinal cord, paraxial mesenchyme, and epidermis, the marginal zone of the neural retina and distal regions of the developing limb. For all stages, significant differences in the spatial expression of Zic1, Zic2, and Zic3 were observed. Furthermore, the expression of Zic genes in Pax3, Wnt-1, and Wnt-3a mutant embryos suggested that Zic genes are not primarily regulated by the three genes which were expressed in dorsal areas similar to Zic genes. However, in open brain, a mutant with severe neural tube defects, and in the Wnt-3a mutant mice, the expression of Zic genes was changed. The changed expression pattern in Wnt-3a mutant mice suggests that Zic genes in the neural tube are regulated by the factors from notochord. Our findings suggest that Zic genes are involved in many developmental processes. Furthermore, analysis of gene expression patterns in different mouse mutants indicated that Zic genes may act upstream of many known developmental regulatory genes.  相似文献   

14.
Despite the known adverse consequences of prenatal alcohol exposure, some pregnant women continue to drink alcohol, making it imperative to identify treatments for children with fetal alcohol spectrum disorders. The authors recently reported that perinatal choline supplementation can reduce some fetal alcohol effects (J. D. Thomas, M. Garrison, & T. M. O'Neill, 2004), and the present study examined whether choline supplementation is effective when administered after third-trimester-equivalent ethanol treatment. Rat pups were exposed to 6.0 g/kg/day ethanol during the neonatal brain growth spurt (Postnatal Days [PD] 4-9) and treated with choline chloride (0, 10, 50, or 100 mg/kg) from PD 10-30. Behavioral testing occurred after choline treatment had ceased. Female subjects exposed to ethanol were overactive and exhibited spatial learning deficits, effects that were attenuated with all doses of choline supplementation. These data indicate that choline supplementation can alter brain development following a developmental insult. Moreover, the data suggest that early dietary interventions may reduce the severity of some fetal alcohol effects, even when administered after birth. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
Tissue remodelling is an important feature during embryogenesis. Although the matrix metalloproteinases are believed to participate in these processes, the relation between matrix metalloproteinases and tissue remodelling during craniofacial morphogenesis remains unclear. The purpose of the study was to look for the presence of enzymes involved in extracellular matrix degradation during craniofacial morphogenesis. Protein expression of the matrix metalloproteinase, 72-kDa gelatinase (matrix metalloproteinase-2, gelatinase A, 72-kDa type IV collagenase) was studied by gelatine zymography and by indirect immunofluorescence with conventional and confocal microscopy. In the anterior region of the developing mouse face, 72-kDa gelatinase was labelled mainly in the tips and peripheral regions of the nasal and facial prominences. Upon contact and fusion of the prominences, the staining was intensely localized to the zone of the fusion and the tips and peripheral regions of the nasal prominences and the maxilla. The labelling of 72-kDa gelatinase was also present in the peripheral regions of the mandible, second branchial arch, and the face around the developing eye. However, during lens vesicle formation, the staining of 72-kDa gelatinase was absent in the invaginated lens ectoderm. After the lens had completely detached from the surface ectoderm, the staining was resumed in the corneal epithelium and mesenchyme. Gelatine zymography was used to confirm the presence of active and latent 72-kDa gelatinase in the developing mouse craniofacial complex. Collectively, these data indicate that 72-kDa gelatinase may play a significant part in localized tissue remodelling during craniofacial morphogenesis and the aberrant expression or function of the enzyme could be involved in causing facial abnormalities.  相似文献   

16.
Homeobox genes play important roles in pattern formation during development. Here, we report the cloning and temporal and spatial expression patterns of a novel homeobox gene Backfoot (BFT for the human gene, and Bft for the mouse gene), whose expression reveals an early molecular distinction between forelimb and hind limb. BFT was identified as a sequence-specific DNA-binding protein. In addition to the homeodomain, it shares a carboxyl-terminal peptide motif with other paired-like homeodomain proteins. Northern hybridization analysis of RNAs from human tissues revealed that human BFT is highly expressed in adult skeletal muscle and bladder. During midgestation embryogenesis, mouse Bft is expressed in the developing hind limb buds, mandibular arches, and Rathke's pouch. The expression of Bft begins prior to the appearance of hind limb buds in mesenchyme but is never observed in forelimbs. At later stages of limb development, the expression is progressively restricted to perichondrial regions, most likely in tendons and ligaments. The timing and pattern of expression suggest that Bft plays multiple roles in hind limb patterning, branchial arch development, and pituitary development. Bft is likely identical to a mouse gene, Ptx1, that was recently isolated by Lamonerie et al. ([1996] Genes Dev. 10:1284-1295) and that has been suggested to play a role in pituitary development.  相似文献   

17.
18.
19.
To investigate the role of IGF in muscle development in vivo, developmental expression and location of IGF-I and -II protein and mRNA were examined in fetal, postnatal, and adult skeletal muscle. Muscle tissue was collected from 30-, 44-, 59-, 68-, 75-, 89-, and 109-d porcine fetuses, 21-d neonatal pigs, and 6-mo-old (adult) pigs. Relative amounts of IGF-II mRNA peaked (P < .05) in 59-d fetal muscle and decreased thereafter. Inversely, muscle IGF-I expression increased (P < .05) to maximal levels around birth. For in situ hybridization, frozen muscle tissue sections (10 microm) were hybridized with a hydrolyzed form of the same riboprobes or incubated with polyclonal or monoclonal antibodies to IGF-I or -II, respectively. The majority of IGF-I and IGF-II mRNA was localized to developing muscle fibers, whereas little signal was found in the surrounding connective tissues. Immunofluorescent localization of IGF-I and -II confirmed that muscle IGF are present in developing muscle fibers. Collectively, these data show that IGF-I and -II are expressed and produced primarily in muscle cells within developing muscle tissue and support the hypothesis that IGF-I and -II modulate fetal muscle development.  相似文献   

20.
Gscl encodes a Goosecoid-related homeodomain protein that is expressed during mouse embryogenesis. In situ hybridization and immunohistochemistry studies show that Gscl is expressed in the pons region of the developing central nervous system and primordial germ cells. Gscl expression is also detected in a subset of adult tissues, including brain, eye, thymus, thyroid region, stomach, bladder and testis. Gscl is located within a region of the mouse genome that is syntenic with the region commonly deleted in DiGeorge and velocardiofacial syndrome (DGS/VCFS) patients. DGS/VCFS patients have craniofacial abnormalities, cardiac outflow defects and hypoplasia of the parathyroid gland and thymus due to haploinsufficiency of a gene or genes located within the deleted region. Thus, the genomic location of Gscl and its expression in a subset of the tissues affected in DGS/VCFS patients suggest that Gscl may contribute to the pathogenesis of DGS/VCFS. To determine the role of Gscl during mouse embryogenesis and in DGS/VCFS, we have deleted Gscl by gene targeting in mouse embryonic stem cells. Both Gscl heterozygous and Gscl null mice were normal and fertile, suggesting that Gscl is not a major factor in DGS/VCFS. Interestingly, expression of the adjacent Es2 gene in the pons region of Gscl null fetuses was absent, suggesting that mutations within the DGS/VCFS region can influence expression of adjacent genes. In addition, embryos that lacked both Gscl and the related Gsc gene appeared normal. These studies represent the first functional analysis of a DGS/VCFS candidate gene in vivo. These Gscl null mice will be an important genetic resource for crosses with other mouse models of the DGS/VCFS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号