共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
基于多级表述策略,提出了二次求解具有控制切换结构动态优化问题的数值方法。基于常用的优化方法获得初始控制结构。动态优化问题根据控制结构进行分级,每一级对应一个特定的控制弧段,进而将原问题表述为一个多级动态优化问题。基于控制向量参数化(CVP),多级动态优化问题转化为一个非线性规划(NLP)问题进行求解。控制参数和级长作为优化变量。基于Pontryagin极大值原理,构造多级伴随系统,进而获得NLP求解器所需的梯度信息。仿真实例验证了方法的有效性。 相似文献
7.
针对RCR算法难以建立高精度的非线性软测量模型的问题,提出了一种径向基函数(radial basis function,RBF)与鲁棒连续回归(robust continuum regression,RCR)相结合的非线性RCR(nonlinear RCR,NLRCR)建模方法。该方法首先应用RBF将非线性样本数据映射到高维特征空间中,然后在高维特征空间中建立RCR线性回归模型。本文通过仿真实验,验证了方法的有效性。并将其应用于延迟焦化汽油干点的软测量建模中,获得了比RCR和RBF-PLS算法更高的预测精度。 相似文献
8.
针对花生四烯酸(ARA)发酵过程复杂,机理模型表达不够准确以及单模型泛化能力弱的问题,提出采用基于仿射传播聚类的支持向量机(SVM)多模型建模算法进行该过程建模。该算法首先用仿射传播聚类(AP)算法对ARA样本数据进行聚类,再用SVM算法对各子类样本分别建立子模型。测试样本根据相似性的测度进行归类,并用所属子类的模型进行预测输出。ARA发酵过程的建模实验表明,与其他建模算法相比,基于仿射传播聚类的SVM多模型建模算法所建立的模型具有更高的回归精度和良好的泛化能力。 相似文献
9.
针对氧化铝蒸发过程故障检测中标注者不切实际的假设和控制参数难以确定问题,提出改进的代价敏感主动学习方法。给出了代价敏感主动学习形式化描述和放松了标注者不切实际的假设。为了提高分类精度和减少标注代价,该方法结合粒子群优化和代价敏感主动学习。利用连续的粒子群优化代价敏感主动学习的控制参数,该参数用于最大化未标注样本的信息度和最小化标注代价。将所提出的方法应用于氧化铝蒸发过程故障检测,实验结果表明,该方法能正确地选择控制参数,有效地减少了误分类代价和标注代价,提高了故障检测率。 相似文献
10.
11.
化工过程的动态优化,大多较为复杂,有相当的难度.新近发展的粒子群优化算法,基于群智能机理,适于求解连续问题,但它不具备遍历特性,影响了全局搜索能力.本文拟引入混沌机制,以混沌变量的遍历性改进粒子群算法,使其更全面地获取目标函数的有用信息,并反映到逐代更新的个体极值和群体极值中,可更有效地带领粒子群移向最优解,提高了全局搜优效率.由此构建为混沌粒子群算法,经多个性能测试,表明其搜索能力优于经典粒子群算法,引入混沌机制是有效的.将其用于Park-Ramirez生物反应器补料流率的动态优化,也取得了满意的效果. 相似文献
12.
13.
混合粒子群优化算法及其应用 总被引:1,自引:0,他引:1
提出了一种通过改进全局最优位置粒子寻优策略而提高粒子群优化计算效率的混合粒子群优化算法。针对流程工业典型设备的状态跟踪预报等有计算时间限制的优化问题,混合粒子群优化算法在不改变原有粒子群粒子寻优策略的前提下,将粒子群整体已搜寻到的全局最优位置看作一个特殊的粒子,令该粒子执行梯度下降寻优的寻优策略。在粒子群的寻优迭代计算中增加全局最优位置粒子单独的梯度下降寻优过程,从而将粒子群优化算法的全局寻优特性与梯度下降算法的邻域寻优特性相结合,以提高粒子群优化算法的整体寻优效率,进而缩短寻优计算的时间。针对流程工业典型设备的实际应用表明,混合粒子群优化算法能够减少寻优迭代次数,进而缩短优化计算时间。 相似文献
14.
微粒群优化算法(particle swarm optimization algorithm,PSO)是由Kennedy和Eberhart 1995年提出的进化计算算法.PSO简单且具有许多良好的优化性能,但对一些复杂优化问题存在容易陷入局部极值的缺陷.本文提出一种变邻域宽度的爬山微粒群优化算法(hill-climbing PSO with variable width neighborhood,vwnHCPSO),并用5种测试函数进行测试和比较,然后将vwnHCPSO用于催化裂化装置(FCCU)主分馏塔轻柴油闪点软测量. 相似文献
15.
相稳定性判别为相平衡计算的基本课题,常采用Gibbs自由能曲面与切平面的距离函数(TPDF)最小化方法求解。对于强非理想体系,或在高压条件下,其TPDF表现出复杂形态,有平凡解和多极值,传统方法难以求得满足约束的全局最小值,从而导致判别失误。粒子群算法(PSO)虽有全局优化性能,但也会陷于局部极小,且缺少约束处理机制。为此,分析了PSO内在蕴含的线性特点,在种群初化、粒子运动等环节提出应对策略,构建线性约束粒子群算法(LCPSO),确保种群在可行空间内搜索。还增设调变参数、局部加速等措施,以兼顾算法的全面探测和细化挖掘的能力,提高其全局优化效能。经多个实例的测试表明,LCPSO适用面广,既可用于超额自由能、状态方程等各类热力学模型,又能克服混合模型一阶不连续的困难,应用范围从液液相分裂拓展到汽液液相分裂。与确定性全局算法IN/GB相比,LCPSO速率高,效果好,尤对多元体系更具优势。 相似文献
16.
17.
从数学的角度分析,电力系统无功优化是一个多变量、多约束、非连续性的混合非线性规划问题,因此,优化过程十分复杂.以减少有功网损为目标函数建立电力系统无功优化计算的数学模型,基于遗传算法和粒子群优化算法,提出一种新颖的混合策略来求解无功优化问题.IEEE 6和IEEE 14节点系统的仿真计算结果表明:与单一的遗传算法或粒子群优化算法相比,该混合策略在优化效果方面具有明显的优势. 相似文献
18.
针对换热网络同步综合方法的不足,本文提出了一种新型Powell粒子群算法,具有传统确定性方法的高精度以及启发式方法的高效率。同时针对群体智能算法优化换热网络问题时存在的不足,提出了云记忆体和个体对立策略,有效地避免算法发生早熟现象,扩大搜索范围。为处理整型变量而提出的两条整型变量优化策略与Powell粒子群算法结合,实现了连续变量与整型变量的同步优化。最后,选取两个经典算例验证算法的性能,均获得了优于文献的结果,表明算法能够找到更优的换热网络结构,是一种处理混合整数非线性问题的有效方法。 相似文献
19.
对于软测量模型参数估计问题, 针对传统梯度法求解非线性最小二乘模型时依赖初值、需要追加趋势分析进行验证和无法直接求解复杂问题的缺陷, 提出将参数估计化为约束优化问题, 使用混合优化算法求解的新思路。为此提出一种自适应混合粒子群约束优化算法(AHPSO-C)。在AHPSO-C算法中, 为平衡全局搜索(混沌粒子群)和局部搜索(内点法), 引入自适应内点法最大函数评价次数更新策略。对12个经典测试函数的仿真结果表明, AHPSO-C是求解约束优化问题的一种有效算法。将算法用于淤浆法高密度聚乙烯(HDPE)串级反应过程中熔融指数软测量模型参数估计, 验证了方法的可行性与优越性。 相似文献
20.
建立了以具有废气循环的回转干燥系统年总费用为目标函数的优化设计数学模型,在此基础上探讨了惯性权因子对微粒群算法性能的影响,并应用微粒群算法求解干燥器优化设计数学模型,对干燥器出口废气温度与循环比进行优化设计。结果表明,带动态非线性惯性因子的微粒群算法对求解多变量的干燥优化设计问题具有方法简单、所需微粒群规模小、收敛速度快等特点;采用部分废气循环并进行优化设计对干燥系统的节能具有十分重要的意义,对湿空气出口温度和废气循环比进行优化设计,其年总费用比无废气循环的常规设计节省18.2%,比循环比为0.2时的常规设计节省12.6%。 相似文献