首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多孔液体是一类具有永久孔隙的新兴液体材料,它将多孔材料优异的性能和液体的流动性结合在一起。具有永久空腔的造孔器(pore generator),可以完全由无机砌块单元、有机配体和无机节点的组合单元或有机砌块单元构成。本文根据造孔器的结构综述了使用无机纳米材料、金属有机框架和多孔笼合成多孔液体的最新研究进展。文章指出作为新的研究领域,多孔液体化学正处于起步阶段,虽然面临着诸多挑战,但应用潜力巨大。目前在气体吸附、异构体识别、多孔液体膜的合成等方面都有研究,有望在气体捕捉和分离、催化、膜材料制备等领域得到应用。  相似文献   

2.
During the past decade, supramolecular nanostructures produced via self-assembly processes have received considerable attention because these structures can lead to dynamic materials. Among these diverse self-assembly systems, the aqueous assemblies that result from the sophisticated design of molecular building blocks offer many potential applications for producing biocompatible materials that can be used for tissue regeneration, drug delivery, and ion channel regulation. Along this line, researchers have synthesized self-assembling molecules based on ethylene oxide chains and peptide building blocks to exploit water-soluble supramolecular structures. Another important issue in the development of systems that self-assemble is the introduction of stimuli-responsive functions into the nanostructures. Recently, major efforts have been undertaken to develop responsive nanostructures that respond to applied stimuli and dynamically undergo defined changes, thereby producing switchable properties. As a result, this introduction of stimuli-responsive functions into aqueous self-assembly provides an attractive approach for the creation of novel nanomaterials that are capable of responding to environmental changes. This Account describes recent work in our group to develop responsive nanostructures via the self-assembly of small block molecules based on rigid-flexible building blocks in aqueous solution. Because the rigid-flexible molecules self-assemble into nanoscale aggregates through subtle anisometric interactions, the small variations in local environments trigger rapid transformation of the equilibrium features. First, we briefly describe the general self-assembly of the rod amphiphiles based on a rigid-flexible molecular architecture in aqueous solution. We then highlight the structural changes and the optical/macroscopic switching that occurs in the aqueous assemblies in response to the external signals. For example, the aqueous nanofibers formed through the self-assembly of the rod amphiphiles respond to external triggers by changing their shape into nanostructures such as hollow capsules, planar sheets, helical coils, and 3D networks. When an external trigger is applied, supramolecular rings laterally associate and merge to form 2D networks and porous capsules with gated lateral pores. We expect that the combination of self-assembly principles and responsive properties will lead to a new class of responsive nanomaterials with many applications.  相似文献   

3.
Alignment methods of nematic liquid crystals (LCs) by surface photoreactions on substrate surfaces were initially proposed around 1990, and the photoalignment technology of nematic LCs has recently been integrated into the LC device fabrication industry due to its profitable features. Accumulated efforts in this field have revealed that applications of photoalignment processes are not limited to conventional nematic LCs but that a variety of functional materials can also be manipulated according to this principle. Target materials have now been extended to thermotropic smectic LCs, discotic LCs, LC polymers, block copolymers, gel networks, conjugated polymers, and organic semiconductors and lyotropic systems including chromonic LCs and inorganic–organic mesostructured hybrids. Through these photochemical approaches, many types of photopatterning for both topographical and orientational modulations have become feasible. This article reviews photoalignment processes applied to a wide range of materials, surveying relatively recent work. Some important related alignment and patterning processes are also introduced to clarify the significance of these photoalignment techniques.  相似文献   

4.
Metal nanoparticles are now creating a new class of materials that are different from either conventional bulk materials or atoms, giving one of the smallest building blocks of matter. Metal nanoparticles have various properties based on high surface area and quantum size effects. Here we focus on the application of metal nanoparticles to liquid crystal displays, which is providing a new field in science and technology. The doping of nanoparticles into liquid crystal materials induces the modification of almost all of the physical properties of the liquid crystal, causing a reduction in the response time of liquid crystal displays. These techniques may be an alternative approach for improving the properties of liquid crystals other than chemical synthesis.  相似文献   

5.
In this work, a new method to prepare fluorinated coatings with mechanical properties enhanced has been developed. Pyridinium, imidazolium, and phosphonium ionic liquids have been synthesized and used as new synthetic building blocks in a polytetrafluoroethylene matrix. The strategy demonstrated using long alkyl chain cations provides an opportunity to prepare nanomaterials with a nanoscale structuration. The design of these new ionic and nanostructured materials is very dependent on the cation-anion combination of ILs. The morphology analyzed by transmission electronic microscopy (TEM) shows that it is clearly tuned by the chemical nature of ILs. The finest structuration leads to a dramatic compromise between stiffness and deformation of material. The small-angle X-Ray scattering (SAXS) shows the evolution of the ionic networks during the mechanical sollicitation.  相似文献   

6.
Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces.  相似文献   

7.
唐丽丽  何道航  观富宜 《化工学报》2012,63(11):3383-3392
肽基分子自组装以其丰富的自组装驱动力、新颖的自组装体纳米结构、自组装体的特殊功能及良好的生物相容性等,在纳米生物材料、护肤和化妆产品、药物传输释放、组织工程支架材料等方面有着广泛的应用前景。由天然氨基酸组成的自组装短肽具有良好的低细胞毒性,可控的降解性能,高的运载效率及细胞摄取率,同时还具有降低药物的毒副作用等优点。因此,它在作为药物和基因的纳米载药材料方面有着巨大的发展前景。使用自组装肽基材料形成的纳米载体对疏水性抗癌药物、蛋白质药物及基因等进行传递释放已成为生物医药学领域的研究重点,因此,对近年来自组装肽基纳米材料作为药物和基因载体在生物医药学上的研究进展做了综述。  相似文献   

8.
The assembly of molecular building blocks into highly ordered structures is crucial, both in nature and for the development of novel functional materials. In nature, noncovalent interactions, such as hydrogen bonds or hydrophobic interactions, enable the reversible assembly of biopolymers, such as DNA or proteins. Inspired by these design principles, scientists have created biohybrid materials that employ natural building blocks and their assembly properties. Thus, structures and materials are attainable that cannot be made through other synthetic procedures. Herein, we review current concepts and highlight recent advances.  相似文献   

9.
Feng X  Hu G  Hu J 《Nanoscale》2011,3(5):2099-2117
The design and architecture of programmable metal-semiconductor nanostructures with excellent optoelectronic properties from metal and semiconductor building blocks with nanoscale dimensions have been a key aim of material scientists due to their central roles in the fabrication of electronic, optical, and optoelectronic nanodevices. This review focuses on the latest advances in the solution-phase synthesis of metal and/or semiconductor homojunction/heterojunction nanomaterials. It begins with the simplest construction of metal/metal and semiconductor/semiconductor homojunctions, and then highlights the synthetic design of metal/metal and semiconductor/semiconductor heterojunction nanostructures with different building blocks. Special emphasis is placed on metal/semiconductor heterojunction nanomaterials, which are the most challenging and promising nanomaterials for future applications in optoelectronic nanodevices. Finally, this review concludes with personal perspectives on the directions for future research in this field.  相似文献   

10.
二维纳米材料是制备膜材料中一类重要的掺杂材料或膜构筑单元,也是新型水处理功能膜的研究热点。已有许多研究报道了二维纳米材料通过有序的堆叠和自组装在膜内构建出规整的水通道,可以赋予膜可调控的分离性能,进而实现trade-off效应的突破,被认为是“下一代膜材料”(next-generation membranes)。同时,二维纳米材料的独特片层结构、催化性能及可修饰性可使膜材料获得新的功能,如导电性能、光/电催化性能等。本文综述了近年来基于二维纳米材料的水处理功能膜研究进展,重点介绍了共混法、自组装等制备方法,并总结了此类功能膜在抗污染、膜通量恢复、强化污染物去除、调控盐截留及污染物监测领域的应用。最后对基于二维纳米材料的水处理功能膜发展方向,如限域催化、调控盐分离、监测传感等新兴领域进行了分析和展望。  相似文献   

11.
张丽  崔尚科  周庆成 《化工进展》2016,35(8):2488-2494
离子自组装是合成功能超分子材料的有力途径,而带相反电荷的小分子离子之间的离子自组装由于具有良好的结构可设计性和功能可调节性,是离子自组装制备功能超分子材料领域的研究热点。本文首先对离子自组装的特点进行了简单的介绍,然后分3类对小分子离子自组装制备功能超分子材料领域进行了综述,主要包括染料与表面活性剂自组装制备功能材料,平面刚性离子自组装制备功能材料以及多金属酸盐离子自组装制备功能材料。目前,小分子离子自组装在组装单元的选择以及材料功能扩展角度已取得了长足的进步,但如何实现利用小分子离子自组装从微观结构到宏观材料的跨度,制备出能在实际生产中应用的功能超分子材料,还有待进一步发展。  相似文献   

12.
Although nanocrystals and nanowires have proliferated new scientific avenues in the study of their physics and chemistries, the bottom-up assembly of these small-scale building blocks remains a formidable challenge for device fabrication and processing. An attractive nanoscale assembly strategy should be cheap, fast, defect tolerant, compatible with a variety of materials, and parallel in nature, ideally utilizing the self-assembly to generate the core of a device, such as a memory chip or optical display. Langmuir-Blodgett (LB) assembly is a good candidate for arranging vast numbers of nanostructures on solid surfaces. In the LB technique, uniaxial compression of a nanocrystal or nanowire monolayer floating on an aqueous subphase causes the nanostructures to assemble and pack over a large area. The ordered monolayer can then be transferred to a solid surface en masse and with fidelity. In this Account, we present the Langmuir-Blodgett technique as a low-cost method for the massively parallel, controlled organization of nanostructures. The isothermal compression of fluid-supported nanoparticles or nanowires is unique in its ability to achieve control over nanoscale assembly by tuning a macroscopic property such as surface pressure. Under optimized conditions (e.g., surface pressure, substrate hydrophobicity, and pulling speed), it allows continuous variation of particle density, spacing, and even arrangement. For practical application and device fabrication, LB compression is ideal for forming highly dense assemblies of nanowires and nanocrystals over unprecedented surface areas. In addition, the dewetting properties of LB monolayers can be used to further achieve patterning within the range of micrometers to tens of nanometers without a predefined template. The LB method should allow for easy integration of nanomaterials into current manufacturing schemes, in addition to fast device prototyping and multiplexing capability.  相似文献   

13.
Synthetic control over the shape, size, and interactions between nanoscale building blocks remains an open challenge in self-assembly. Here, we propose to engineer triblock, star-like polymers to design patterning on nanoparticles. We developed a theory that characterizes the structural organization of grafted polymers as a function of parameters such as grafting density, chain length, block fractions, and core shape/sizes. Stripe-like patterning and corner/edge patch formation on arbitrarily shaped cores are readily accessible using our framework, all of which can be a priori predicted. Lastly, we employ assembly simulations to show that the resulting particles provide tighter control over structural and orientational orderings during self-assembly. More importantly, they offer a way to pattern directional interactions that can override face–face alignment tendencies intrinsic to each core geometry. Our theory, therefore, creates a new handle for tuning nanoscale synthesis, enabling designs of complex building blocks that can target novel assemblies for materials fabrication.  相似文献   

14.
A major part of contemporary nanomaterials research is focused on metal and semiconductor nanoparticles, constituted of extended lattices of atoms or ions. Molecular nanoparticles assembled from small molecules through non-covalent interactions are relatively less explored but equally fascinating materials. Their unique and versatile characteristics have attracted considerable attention in recent years, establishing their identity and status as a novel class of nanomaterials. Optical characteristics of molecular nanoparticles capture the essence of their nanoscale features and form the basis of a variety of applications. This review describes the advances made in the field of fabrication of molecular nanoparticles, the wide spectrum of their optical and nonlinear optical characteristics and explorations of the potential applications that exploit their unique optical attributes.  相似文献   

15.
The process of self-assembly spontaneously creates well-defined structures from various chemical building blocks. Self-assembly can include different levels of complexity: it can be as simple as the dimerization of two small building blocks driven by hydrogen bonding or as complicated as a cell membrane, a remarkable supramolecular architecture created by a bilayer of phospholipids embedded with functional proteins. The study of self-assembly in simple systems provides a fundamental understanding of the driving forces and cooperativity behind these processes. Once the rules are understood, these guidelines can facilitate the research of highly complex self-assembly processes. Among the various components for self-assembly, an amphiphilic molecule, which contains both hydrophilic and hydrophobic parts, forms one of the most powerful building blocks. When amphiphiles are dispersed in water, the hydrophilic component of the amphiphile preferentially interacts with the aqueous phase while the hydrophobic portion tends to reside in the air or in the nonpolar solvent. Therefore, the amphiphiles aggregate to form different molecular assemblies based on the repelling and coordinating forces between the hydrophilic and hydrophobic parts of the component molecules and the surrounding medium. In contrast to conventional amphiphiles, supra-amphiphiles are constructed on the basis of noncovalent interactions or dynamic covalent bonds. In supra-amphiphiles, the functional groups can be attached to the amphiphiles by noncovalent synthesis, greatly speeding their construction. The building blocks for supra-amphiphiles can be either small organic molecules or polymers. Advances in the development of supra-amphiphiles will not only enrich the family of conventional amphiphiles that are based on covalent bonds but will also provide a new kind of building block for the preparation of complex self-assemblies. When polymers are used to construct supra-amphiphiles, the resulting molecules are known as superamphiphiles. This Account will focus on the use of amphiphiles and supra-amphiphiles for self-assembly at different levels of complexity. We introduce strategies for the fabrication of robust assemblies through self-assembly of amphiphiles. We describe the supramolecular approach for the molecular design of amphiphiles through the enhancement of intermolecular interaction among the amphiphiles. In addition, we describe polymerization under mild conditions to stabilize the assemblies formed by self-assembly of amphiphiles. Finally, we highlight self-assembly methods driven by noncovalent interactions or dynamic covalent bonds for the fabrication of supra-amphiphiles with various topologies. Further self-assembly of supra-amphiphiles provides new building blocks for complex structures, and the dynamic nature of the supra-amphiphiles endows the assemblies with stimuli-responsive functions.  相似文献   

16.
Ionic discotic liquid crystals are salts of discotic liquid crystals that may display lyotropic and thermotropic mesomorphism. Columnar structures of π-π stacking ionic discotic liquid crystals function not only as anisotropic organic semiconductors, similar to their neutral analogues, but they may also efficiently conduct ions. This combination of electronic and ionic conduction is only one of several unique properties that these materials may display, but their systematic investigation has been limited because of their often complex synthesis, purification, and characterization. However, a comprehensive account of existing reports on ionic discotic liquid crystals is not straightforward, despite their relatively small number, because publications are scattered across different areas of research, such as liquid crystals, ionic liquids, and ionic self-assembly. This review intends to provide a concise but comprehensive overview of the published work on ionic discotic liquid crystals and related compounds and is expected to stimulate further exploration. Highlighted in this review is the mesomorphism of ionic discotic liquid crystals and its dependence on structural changes, which is also the focus of most reported studies. Particular attention was given to the dependence of mesomorphism on the location and types of the charged groups as these are parameters unique to these compounds. Also described are electronic, optical, and other properties of these materials if reported.  相似文献   

17.
Maity P  Xie S  Yamauchi M  Tsukuda T 《Nanoscale》2012,4(14):4027-4037
Bare metal clusters with fewer than ~100 atoms exhibit intrinsically unique and size-specific properties, making them promising functional units or building blocks for novel materials. To utilize such clusters in functional materials, they need to be stabilized against coalescence by employing organic ligands, polymers, and solid materials. To realize rational development of cluster-based materials, it is essential to clarify how the stability and nature of clusters are modified by interactions with stabilizers by characterizing isolated clusters. The next stage is to design on-demand function by intentionally controlling the structural parameters of cluster-based materials; such parameters include the size, composition, and atomic arrangement of clusters and the interfacial structure between clusters and stabilizers. This review summarizes the current state of the art of isolation of gold clusters stabilized in various environments and surveys ongoing efforts to precisely control the structural parameters with atomic level accuracy.  相似文献   

18.
《云南化工》2017,(4):6-12
树枝状分子是一类有较大潜力的新型高分子纳米材料。目前为止,树枝状大分子的研究已经涉及生物、化学、物理学、机械学、纳米学等领域。综述了最新报道的几类功能树枝状分子在非线性光学材料、光电材料、药物化学和自组装化学方面的最新应用进展。  相似文献   

19.
This review is focused on the basic concepts of microsegregation and a fundamental understanding of the formation of positionally ordered LC phases based on micro- and nanophases, interaction parameters and interfaces. Selected examples were chosen from the actual literature to illustrate the concepts. Microsegregation is the basis of classical LC phases and cybotaxis, and most importantly, it paves the way to a huge number of new LC phases. Beside the distinct modes of micellar packing motifs and liquid quasicrystals formed by self-assembly of dendritic molecules, attention is also focused on the specific effects of rigid anisometric units and polyphilicity. Honeycomb LC phases, vesicular LC phases and mesophases with 3D-lattices lead to enhanced complexity of LC self-assembly.  相似文献   

20.
Three-dimensional functional nanoscale assembly requires not only self-assembly of individual nanomaterials responsive to external stimuli, such as temperature, light, and concentrations, but also directed assembly of many different nanomaterials in one-pot responsive to multiple internal stimuli signaling the needs for such materials at a specific location and a particular time. The use of functional DNA (DNAzymes, aptamers, and aptazymes) to meet these challenges is reviewed. In addition, a biology-inspired proof-reading and error correction method is introduced to cope with errors in nanomaterials assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号