共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S Worgall R Singh PL Leopold RJ Kaner NR Hackett N Topf MA Moore RG Crystal 《Canadian Metallurgical Quarterly》1999,93(2):655-666
Based on the hypothesis that genetic modification of freshly isolated alveolar macrophages (AM) with the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA would induce AM to proliferate, this study focuses on the ability of adenoviral (Ad) vectors to transfer and efficiently express the murine (m) GM-CSF cDNA in murine AM with consequent expansion in the number of AM in vitro and in vivo. To demonstrate that an Ad vector can effectively transfer and express genes in AM, murine AM recovered by bronchoalveolar lavage from the lung of Balb/c mice were infected with an Ad vector coding for green fluorescent protein (GFP) in vitro and expressed GFP in a dose-dependent fashion. Infection of AM with an Ad vector containing an expression cassette coding for mGM-CSF led to GM-CSF expression and to AM proliferation in vitro. When AM infected with AdGFP were returned to the respiratory tract of syngeneic recipient mice, GFP-expressing cells could still be recovered by bronchoalveolar lavage 2 weeks later. In vitro infection of AM with AdmGM-CSF and subsequent transplantation of the genetically modified AM to the lungs of syngeneic recipients led to GM-CSF expression in vivo. Strikingly, the AM recovered by lavage 5 weeks after transplantation demonstrated an increased rate of proliferation, and the total number of alveolar macrophages was 1. 9-fold greater than controls. Importantly, the increase in the numbers of AM was selective (ie, other inflammatory cell numbers were unchanged), and there was no modification to the lung architecture. Thus, it is feasible to genetically modify AM with Ad vectors and to use this strategy to modify the behavior of AM in vivo. Based on the importance of AM in the primary defense of the respiratory epithelial surface, this strategy may be useful in enhancing pulmonary defenses in immunodeficiency states. 相似文献
3.
HM Liu SE Newbrough SK Bhatia CE Dahle AM Krieg GJ Weiner 《Canadian Metallurgical Quarterly》1998,92(10):3730-3736
Immunostimulatory oligodeoxynucleotides containing the CpG motif (CpG ODN) can activate various immune cell subsets and induce production of a number of cytokines. Prior studies have demonstrated that both CpG ODN and granulocyte-macrophage colony-stimulating factor (GM-CSF) can serve as potent vaccine adjuvants. We used the 38C13 murine lymphoma system to evaluate the immune response to a combination of these two adjuvants. Immunization using antigen, CpG ODN, and soluble GM-CSF enhanced production of antigen-specific antibody and shifted production towards the IgG2a isotype, suggesting an enhanced TH1 response. This effect was most pronounced after repeat immunizations with CpG ODN and antigen/GM-CSF fusion protein. A single immunization with CpG ODN and antigen/GM-CSF fusion protein 3 days before tumor inoculation prevented tumor growth. CpG ODN enhanced the production of interleukin-12 by bone marrow-derived dendritic cells and increased expression of major histocompatibility complex class I and class II molecules, particularly when cells were pulsed with antigen/GM-CSF fusion protein. We conclude that the use of CpG ODN in combination with strategies involving GM-CSF enhances the immune response to antigen and shifts the response towards a TH1 response and that this approach deserves further evaluation in tumor immunization approaches and other conditions in which an antigen-specific TH1 response is desirable. 相似文献
4.
WR Weiss KJ Ishii RC Hedstrom M Sedegah M Ichino K Barnhart DM Klinman SL Hoffman 《Canadian Metallurgical Quarterly》1998,161(5):2325-2332
Using the murine parasite Plasmodium yoelii (Py) as a model for malaria vaccine development, we have previously shown that a DNA plasmid encoding the Py circumsporozoite protein (PyCSP) can protect mice against sporozoite infection. We now report that mixing a new plasmid PyCSP1012 with a plasmid encoding murine granulocyte-macrophage colony-stimulating factor (GM-CSF) increases protection against malaria, and we have characterized in detail the increased immune responses due to GM-CSF. PyCSP1012 plasmid alone protected 28% of mice, and protection increased to 58% when GM-CSF was added (p < 0.0001). GM-CSF plasmid alone did not protect, and control plasmid expressing inactive GM-CSF did not enhance protection. GM-CSF plasmid increased Abs to PyCSP of IgG1, IgG2a, and IgG2b isotypes, but not IgG3 or IgM. IFN-gamma responses of CD8+ T cells to the PyCSP 280-288 amino acid epitope increased but CTL activity did not change. The most dramatic changes after adding GM-CSF plasmid were increases in Ag-specific IL-2 production and CD4+ T cell proliferation. We hypothesize that GM-CSF may act on dendritic cells to enhance presentation of the PyCSP Ag, with enhanced IL-2 production and CD4+ T cell activation driving the increases in Abs and CD8+ T cell function. Recombinant GM-CSF is already used in humans for medical purposes, and GM-CSF protein or plasmids may be useful as enhancers of DNA vaccines. 相似文献
5.
JW Simons EM Jaffee CE Weber HI Levitsky WG Nelson MA Carducci AJ Lazenby LK Cohen CC Finn SM Clift KM Hauda LA Beck KM Leiferman AH Owens S Piantadosi G Dranoff RC Mulligan DM Pardoll FF Marshall 《Canadian Metallurgical Quarterly》1997,57(8):1537-1546
Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced, irradiated tumor vaccines induce potent, T-cell-mediated antitumor immune responses in preclinical models. We report the initial results of a Phase I trial evaluating this strategy for safety and the induction of immune responses in patients with metastatic renal cell carcinoma (RCC). Patients were treated in a randomized, double-blind dose-escalation study with equivalent doses of autologous, irradiated RCC vaccine cells with or without ex vivo human GM-CSF gene transfer. The replication-defective retroviral vector MFG was used for GM-CSF gene transfer. No dose-limiting toxicities were encountered in 16 fully evaluable patients. GM-CSF gene-transduced vaccines were equivalent in toxicity to nontransduced vaccines up to the feasible limits of autologous tumor vaccine yield. No evidence of autoimmune disease was observed. Biopsies of intradermal sites of injection with GM-CSF gene-transduced vaccines contained distinctive macrophage, dendritic cell, eosinophil, neutrophil, and T-cell infiltrates similar to those observed in preclinical models of efficacy. Histological analysis of delayed-type hypersensitivity responses in patients vaccinated with GM-CSF-transduced vaccines demonstrated an intense eosinophil infiltrate that was not observed in patients who received nontransduced vaccines. An objective partial response was observed in a patient treated with GM-CSF gene-transduced vaccine who displayed the largest delayed-type hypersensitivity conversion. No replication-competent retrovirus was detected in vaccinated patients. This Phase I study demonstrated the feasibility, safety, and bioactivity of an autologous GM-CSF gene-transduced tumor vaccine for RCC patients. 相似文献
6.
JK Fraser JJ Guerra CY Nguyen JE Indes JC Gasson SD Nimer 《Canadian Metallurgical Quarterly》1994,14(3):2213-2221
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the proliferation and maturation of normal myeloid progenitor cells and can also stimulate the growth of acute myelogenous leukemia (AML) blasts. GM-CSF is not normally produced by resting cells but is expressed by a variety of activated cells including T lymphocytes, macrophages, and certain cytokine-stimulated fibroblasts and endothelial cells. Production of GM-CSF by cultured AML cells has been demonstrated, and GM-CSF expression by normal myeloid progenitors has been postulated to play a role in myelopoiesis. We have investigated the regulation of expression of GM-CSF in AML cell lines, and our results demonstrate the presence of a strong constitutive promoter element contained within 53 bp upstream of the cap site. We have also identified a negative regulatory element located immediately upstream of the positive regulatory element (within 69 bp of the cap site) that is active in AML cell lines but not T cells or K562 CML cells. Competition transfection and mobility shift studies demonstrate that this activity correlates with binding of a 45-kDa protein. 相似文献
7.
8.
JN Winter HM Lazarus A Rademaker M Villa C Mangan M Tallman L Jahnke L Gordon S Newman K Byrd BW Cooper N Horvath E Crum EA Stadtmauer E Conklin A Bauman J Martin C Goolsby SL Gerson J Bender M O'Gorman 《Canadian Metallurgical Quarterly》1996,14(1):277-286
PURPOSE: To study the toxicity and efficacy of combined granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) administration for mobilization of hematopoietic progenitor cells (HPCs). MATERIALS AND METHODS: Cohorts of a minimum of five patients each were treated subcutaneously as follows: G-CSF 5 micrograms/kg on days 1 to 12 and GM-CSF at .5, 1, or 5 micrograms/kg on days 7 to 12 (cohorts 1, 2, and 3); GM-CSF 5 micrograms/kg on days 1 to 12 and G-CSF 5 micrograms/kg on days 7 to 12 (cohort 4); and G-CSF and GM-CSF 5 micrograms/kg each on days 1 to 12 (cohort 5). Ten-liter aphereses were performed on days 1 (baseline, pre-CSF), 5, 7, 11, and 13. Colony assays for granulocyte-macrophage colony-forming units (CFU-GM) and erythroid burst-forming units (BFU-E) were performed on each harvest. RESULTS: The principal toxicities were myalgias, bone pain, fever, nausea, and mild thrombocytopenia, but none was dose-limiting. Four days of treatment with either G-CSF or GM-CSF resulted in dramatic and sustained increases in the numbers of CFU-GM per kilogram collected per harvest that represented 35.6 +/- 8.9- and 33.7 +/- 13.0-fold increases over baseline, respectively. This increment was attributable both to increased numbers of mononuclear cells collected per 10-L apheresis and to increased concentrations of progenitors within each collection. The administration of G-CSF to patients already receiving GM-CSF (cohort 4) caused the HPC content to surge to nearly 80-fold the baseline (P = .024); the reverse sequence, ie, the addition of GM-CSF to G-CSF, was less effective. The CFU-GM content of the baseline aphereses correlated with the maximal mobilization achieved (r = .74, P = .001). CONCLUSION: Combined G-CSF and GM-CSF administration effectively and predictably mobilizes HPCs and facilitates apheresis. 相似文献
9.
F Levi-Schaffer V Temkin V Malamud S Feld Y Zilberman 《Canadian Metallurgical Quarterly》1998,160(11):5554-5562
Mast cell-eosinophil interactions in allergy have not yet been completely defined. To determine whether mast cells influence eosinophil survival, human peripheral blood eosinophils were incubated with rat peritoneal mast cell sonicate. After 3 days, viable eosinophils in medium were 21.3% compared with 44% with mast cell sonicate. Like sonicate, supernatants of compound 48/80-activated mast cells enhanced eosinophil survival, demonstrating that the factor(s) involved is stored preformed and rapidly released. Increased eosinophil survival was due to an inhibition of apoptosis (morphologic analysis; annexin V/PI). Neutralizing Abs to granulocyte-macrophage CSF (GM-CSF), but not to IL-3 or IL-5, decreased by 61.7% the enhancing effect on eosinophil viability. Eosinophils are the source of GM-CSF since its release in the culture medium was inhibited by their incubation with the mast cell sonicate together with dexamethasone. In addition, eosinophils incubated with the sonicate expressed mRNA for GM-CSF. To partially characterize the mast cell-derived factor(s) increasing eosinophil survival, the sonicate was heated (56 degrees C/30 min or 100 degrees C/10 min) or preincubated with antihistamines or with anti-TNF-alpha-neutralizing Abs. Most of the activity was heat labile. TNF-alpha was found to be predominantly (70%) responsible, while histamine had no role. Mast cell sonicate also caused eosinophils to release eosinophil peroxidase and to display morphologic signs of activation. In conclusion, we have demonstrated that mast cells enhance eosinophil survival in part through their activation to produce and release the autocrine survival cytokine GM-CSF. 相似文献
10.
PW Miller S Sharma M Stolina K Chen L Zhu RW Paul SM Dubinett 《Canadian Metallurgical Quarterly》1998,5(6):380-389
Lung cancer, the leading cause of cancer death in the United States, is resistant to most currently available therapies. To evaluate a multicomponent gene therapy approach that replaces tumor-bearing host immune deficits, we genetically modified Line 1 (L1C2), a weakly immunogenic alveolar cell carcinoma cell line. L1C2 was transduced ex vivo with a retroviral construct that contained two components: a cytokine gene (granulocyte-macrophage colony-stimulating factor) and a drug sensitivity gene (herpes simplex virus thymidine kinase). The third component of this therapy, in vitro-activated syngeneic bone marrow-derived dendritic cells, was included to augment antigen presentation. The addition of ganciclovir (GCV) caused the lysis of transduced tumor cells, resulting in the release of potential tumor antigens. Ex vivo-transduced tumor cells regressed in vivo following GCV therapy but were not effective in the treatment of established parental tumors. To treat established tumors, dendritic cells were administered in combination with transduced tumor cells and GCV. A total of 50% of these mice rejected the 5-day-old established tumors and were immune to rechallenge with parental L1C2 cells. Thus, this multicomponent gene therapy system leads to both the regression of established tumors and enhanced immunogenicity in this weakly immunogenic murine lung cancer model. 相似文献
11.
In vitro pretreatment of human mononuclear blood cells with a combination of interleukin-2 and interleukin-4 decreases corticosteroid receptor affinity and reduces the anti-proliferative effects of corticosteroids. Similar abnormalities have been observed in mononuclear blood cells of steroid-resistant asthmatics. In vitro steroid resistance was induced by 48 h pretreatment of mononuclear blood cells from healthy individuals (n = 10) with interleukin-2 and interleukin-4 (500 Units (U)/ml). The effects of three structurally different corticosteroids (10(-7)-10(-11) M) on lipopolysaccharide-stimulated (10 ng/ml; 20 h) production of granulocyte-macrophage colony-stimulating factor (GM-CSF) were examined. GM-CSF production was efficiently inhibited by all three corticosteroids in the control cultures. Cortivazol was significantly more potent (IC50 = 3 x 10(-11) M) than budesonide and tipredane (IC50 = 2.5 x 10(-10) M and IC50 = 2 x 10(-10) M, respectively). However. interleukin-2 and interleukin-4 pretreatment counteracted the inhibitory effects of all three corticosteroids to a similar degree. The results highlight the importance of interleukin-2 and interleukin-4 in the induction of steroid resistance, since pretreatment of mononuclear blood cells with these cytokines impaired corticosteroid inhibition of GM-CSF production. 相似文献
12.
13.
Smooth muscle cells (SMC) are the major cell type found in the walls of large blood vessels and appear to participate in local immune and inflammatory reactions, as well as in certain vascular diseases. We tested whether human arterial SMC can produce in vitro the colony stimulating factors (CSFs), granulocyte macrophage-CSF (GM-CSF) and macrophage CSF (M-CSF). Untreated internal mammary artery and aortic SMC produced no detectable GM-CSF but constitutively made M-CSF, measured by ELISA and radioimmunoassay, respectively. Interleukin-1 (IL-1) and, to a lesser extent, tumor necrosis factor alpha (TNF alpha) stimulated GM-CSF formation within 3 h; mRNA levels also increased particularly in the presence of the protein synthesis inhibitor, cycloheximide. IL-1, TNF alpha and, in addition, interferon-gamma (IFN-gamma) raised the M-CSF levels within 6 h; cycloheximide potentiated the effects of IL-1 and TNF alpha on mRNA levels. These results suggest that cytokine-stimulated human arterial SMC may be a source of the M-CSF found in atherosclerotic lesions. Since monocytes/macrophages can be activated by GM-CSF and M-CSF, while GM-CSF can also affect granulocyte function, SMC may participate in inflammatory reactions and vascular diseases by releasing these cytokines. 相似文献
14.
To clarify the differences of the signaling pathways used by granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor- (TNF), we investigated activation of mitogen-activated protein kinase (MAPK) subtype cascades in human neutrophils stimulated by these cytokines. G-CSF exclusively tyrosine-phosphorylated extracellular signal-regulated kinase (ERK). GM-CSF tyrosine-phosphorylated ERK strongly and p38 MAPK weakly, whereas TNF tyrosine-phosphorylated p38 MAPK strongly and ERK weakly. Consistent with these findings, MEK, an upstream kinase of ERK, was phosphorylated by G-CSF, GM-CSF, and TNF, whereas MKK3/MKK6, an upstream kinase of p38 MAPK, was phosphorylated by GM-CSF and TNF, but not by G-CSF. The potency of these cytokines to phosphorylate ERK and MEK was GM-CSF > G-CSF > TNF, whereas that to phosphorylate p38 MAPK and MKK3/MKK6 was TNF > GM-CSF. C-Jun amino-terminal kinase (JNK) was not tyrosine-phosphorylated by any cytokine despite the existence of JNK proteins in human neutrophils, whereas it was tyrosine-phosphorylated by TNF in undifferentiated and all-trans retinoic acid-differentiated HL-60 cells. Increased phosphorylation of ERK or p38 MAPK was detected within 1 to 5 minutes after stimulation with each cytokine and was dependent on the concentrations of cytokines used. MEK inhibitor (PD98059) reduced tyrosine phosphorylation of ERK, but not p38 MAPK, induced by G-CSF, GM-CSF, or TNF. GM-CSF- or TNF-induced superoxide (O2-) release was inhibited by p38 MAPK inhibitor (SB203580) in a dose-dependent manner, suggesting the possible involvement of p38 MAPK in GM-CSF- or TNF-induced O2- release. The results indicate that G-CSF, GM-CSF, and TNF activate the overlapping but distinct MAPK subtype cascades in human neutrophils and suggest that the differential activation of ERK and p38 MAPK cascades may explain the differences of the effects of these cytokines on human neutrophil functions. 相似文献
15.
Voriconazole (VCZ) was tested for antifungal activity against Aspergillus fumigatus hyphae alone or in combination with neutrophils or monocytes. Antifungal activity was measured as percent inhibition of hyphal growth in assays using the dye MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] or XTT [2, 3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxa nilide ]. With both assays, VCZ inhibited hyphal growth at concentrations of <1 microgram/ml and was almost as active as amphotericin B. VCZ (0.6 microgram/ml) was sporicidal, as was amphotericin B (0.4 microgram/ml). With both the MTT and XTT assays, neutrophils alone inhibited hyphae; when combined with VCZ, there was additive activity. Both granulocyte colony-stimulating factor- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-treated polymorphonuclear neutrophils (PMN) had enhanced inhibition of hyphal growth. Moreover, such treatment of PMN also enhanced the collaboration of PMN with VCZ. Monocytes inhibited hyphal growth. When VCZ was combined with monocytes or monocytes were treated with GM-CSF, inhibition was significantly increased, to similar levels. However, the combination of VCZ with GM-CSF treatment of monocytes did not significantly increase the high-level inhibition by monocytes with either agent alone. 相似文献
16.
N Shinoura Y Yoshida A Sadata KI Hanada S Yamamoto T Kirino A Asai H Hamada 《Canadian Metallurgical Quarterly》1998,9(14):1983-1993
Astrocytic tumors frequently express Fas/APO-1 (Fas), in sharp contrast to surrounding normal brain cells, providing a potential window through which selective killing of tumor cells could be pursued. To assess this possibility, we transduced Fas into U251, a glioma cell line resistant to anti-Fas antibody-mediated apoptosis, and obtained transfectants with high levels of Fas expression. Anti-Fas antibody showed significantly enhanced cytotoxicity for the transfectants, suggesting that U251 cells maintained an intercellular cascade of Fas-mediated apoptosis. When U251 transfectants with high-level Fas expression were transduced with Fas ligand-encoding gene via retrovirus, they were unaffected by exposure to anti-Fas antibody or Fas ligand adenovirus (Adeno-FL). Thus, retroviral induction of Fas ligand into the glioma cells with high levels of Fas led to the selection of cells that were resistant to Fas-dependent apoptosis. These resistant U251 transfectants were susceptible to FADD adenovirus (Adeno-FADD)-induced apoptosis, indicating that a cascade of death signals was blocked at the steps between Fas ligand and FADD. As for adenoviral transduction of Fas ligand into gliomas, gliomas with a relatively high level of expression of Fas were remarkably sensitive to Adeno-FL-induced apoptosis. Besides, Adeno-FADD induced pronounced apoptosis in all glioma cells. Our data suggest the possibility of using adenovirus-mediated transduction of Fas ligand and FADD genes as a therapeutic approach to target gliomas. 相似文献
17.
A Bosch PB McCray KS Walters M Bodner DJ Jolly HH van Es T Nakamura K Matsumoto BL Davidson 《Canadian Metallurgical Quarterly》1998,9(12):1747-1754
We have previously shown that intravenous administration of keratinocyte growth factor (KGF) induces hepatocyte proliferation, allowing for efficient and noninvasive in vivo gene transfer with high-titer retroviral vectors in mice. The distinctive periportal distribution of transduced cells led us to investigate the ability of virus-sized particles to perfuse the liver adequately after growth factor treatment. We found that perfusion was adequate, and that transduction was limited to the periportal region because only those cells were stimulated to divide. Cells in this region also showed increased expression of Ram-1, the receptor for the murine Moloney leukemia virus (MoMLV) amphotropic envelope, after KGF treatment. In further studies we found that recombinant hepatocyte growth factor (HGF) induces a different population of hepatocytes to divide and upregulate Ram-1. The differential pattern of induction suggested that combining KGF and HGF would improve gene transfer efficiency further. Indeed, simultaneous delivery of both growth factors leads to an overall increase in the number of proliferating cells. Importantly, when coupled with MoMLV delivery, efficiency of gene transfer increased. These results confirm the utility of growth factors for noninvasive hepatic gene transfer in mice, and demonstrate how experiments to define the mechanism of transduction can be taken advantage of to develop improved gene transfer protocols. 相似文献
18.
G Barbaro G Di Lorenzo B Grisorio M Soldini G Barbarini 《Canadian Metallurgical Quarterly》1997,11(12):1453-1461
OBJECTIVE: To assess the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on white blood cell (WBC) count and on the rate of opportunistic infections in a large and selected population of leukopenic HIV-positive patients compared with non-treated controls. DESIGN: Open-label, randomized, comparative clinical study. SETTING: University hospitals and AIDS centres. PATIENTS AND METHODS: One hundred and twenty-three leukopenic HIV-positive patients received recombinant human GM-CSF (300 microg subcutaneously daily for 1 week, and 150 microg subcutaneously two times weekly for 11 weeks thereafter); the control group comprised 121 non-treated leukopenic HIV-positive patients. A complete blood cell count with differential, platelet count, reticulocyte count, and CD4+ and CD8+ T-cell subset counts were performed in both patient groups at baseline and at weeks 1, 12 and 24. RESULTS: The administration of GM-CSF resulted in a significant increase of WBC count in patients compared with non-treated controls. Total leukocyte count increased by 22% at week 1 and by 65% at week 12 compared with baseline levels; a 20% increase of total leukocyte count was still present at week 24. Increases of neutrophils, eosinophils and monocytes were responsible for the majority of the increase in WBC count. Opportunistic infections occurred in 61.7% of GM-CSF-treated patients and in 72% of the patients of the control group (relative risk, 0.86; 95% confidence interval, 0.72-1.03; P = 0.123). Mild flu-like side-effects were observed in most patients receiving GM-CSF, although they were not sufficiently severe to warrant withdrawal from the study. CONCLUSIONS: GM-CSF was well tolerated and biologically active in leukopenic HIV-positive patients, with a significant, although time-limited, increase of WBC count compared with non-treated patients. The administration of this growth factor should be considered in ameliorating the myelosuppression observed with some cell-cycle-specific antiviral and anti-neoplastic agents. 相似文献
19.
RA Nash SA Burstein R Storb W Yang K Abrams FR Appelbaum T Boone HJ Deeg LD Durack FG Schuening 《Canadian Metallurgical Quarterly》1995,86(5):1765-1775
Administration of recombinant canine granulocyte-macrophage colony-stimulating factor (rcGM-CSF) to normal dogs in previous studies induced an increase in peripheral blood neutrophils and a dose-dependent decrease in platelet counts. In six dogs that received the highest tested dose of rcGM-CSF (50 micrograms/kg/d) for a minimum of 12 days, the mean nadir of the platelet count was 46,000/microL (range, 4,000 to 91,000/microL) on day 9 +/- 1.1 after starting therapy, compared with a mean baseline platelet count of 398,000/microL (range, 240,000 to 555,000/microL). In three dogs, survival of autologous 111In-labeled platelets was reduced from a mean of 4.9 days to 1.3 days during the administration of rcGM-CSF. Biodistribution studies with gamma camera imaging indicated that there was an increase in mean hepatic uptake during the administration of rcGM-CSF, from 15% to 44% of the total injected 111In-labeled platelets at 2 hours, whereas splenic uptake was not significantly changed. In contrast, in two evaluable dogs who were recipients of 111In-labeled platelets from matched allogeneic donors receiving rcGM-CSF, platelet survival was not reduced and no increased hepatic uptake was noted. A third dog became alloimmunized to the matched donor platelets and was not evaluable. Immunohistologic studies of liver and spleen were performed with monoclonal antibodies specific for canine gpIIb/IIIa and P-selectin in dogs treated with rcGM-CSF and compared with untreated controls. On treatment, a marked reduction of platelets in the red pulp of the spleen was evident, and in general, the presence of platelet antigen in the liver was unchanged. Therefore, platelets were not being sequestered, but destroyed in the liver and spleen. The platelet antigens, P-selectin and gpIIb/IIIa, were identified in association with Kupffer cells in the liver, but no difference in the number of distribution of these Kupffer cells was found between controls and rcGM-CSF-treated dogs. In the spleen during rcGM-CSF treatment, most platelet antigens were associated with large mononuclear cells in the marginal zone. During administration of rcGM-CSF, CD1c and CD11c expression was increased on Kupffer cells. Platelet P-selectin expression and binding of leukocytes to circulating platelets were unchanged from baseline studies with rcGM-CSF treatment. In conclusion, during the administration of rcGM-CSF to dogs, a local process in the liver and spleen is induced resulting in thrombocytopenia.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
20.
RS Greenfield GR Braslawsky KF Kadow GL Spitalny D Chace CO Bull I Bursuker 《Canadian Metallurgical Quarterly》1993,150(12):5241-5251
Granulocyte-macrophage (GM)-CSF is an important hematopoietic cytokine that regulates proliferation and differentiation of macrophages, neutrophils, and eosinophils. In this study, we generated mAb to five synthetic peptides that correspond to regions along the murine GM-CSF molecule. The ability of anti-peptide mAb to bind to and inhibit biologic activity of murine (m) GM-CSF was determined. mAb with the highest neutralization titers were derived from mice immunized with peptide II, which correspond to amino acids 27 to 38 of mGM-CSF. Immunochemical studies showed that peptide II specifically blocked binding of anti-peptide II mAb to GM-CSF. mAb to two other peptides in the N-terminal half corresponding to residues 7 to 17 and 47 to 58, respectively, of mGM-CSF also inhibited GM-CSF-dependent proliferation and differentiation of murine bone marrow precursors for macrophages and granulocytes. Anti-peptide mAb also inhibited growth of a murine hematopoietic cell line FDCP1 and a murine T cell line HT-2, which was shown to be dependent on GM-CSF for growth in vitro. Biologic activity of both natural and recombinant mGM-CSF was neutralized by anti-peptide mAb. These findings indicate that epitopes in the N-terminal region of mGM-CSF are important for biologic activity, and the epitope defined by peptide II (residues 27 to 38) lies within a particularly important functional domain of the mGM-CSF molecule. 相似文献