共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Que AH Mechref Y Huang Y Taraszka JA Clemmer DE Novotny MV 《Analytical chemistry》2003,75(7):1684-1690
To deal with the complexity of the glycan mixtures released from glycoproteins, an efficient form of micro-column separations, capillary electrochromatography, has been combined with high-performance mass spectrometry (Fourier transform ion cyclotron resonance). Contour plots have been generated from the mixtures of O-linked oligosaccharides originated from bovine mucin and bile salt-stimulated lipase, a large glycoprotein enzyme. 相似文献
3.
A two-dimensional separation system on a microfabricated device was demonstrated using open-channel electrochromatography as the first dimension and capillary electrophoresis as the second dimension. The first dimension was operated under isocratic conditions, and the effluent from the first dimension was repetitively injected into the second dimension every few seconds. A 25-cm separation channel with spiral geometry for open-channel electrochromatography was chemically modified with octadecylsilane and coupled to a 1.2-cm straight separation channel for capillary electrophoresis. Fluorescently labeled products from tryptic digests of beta-casein were analyzed in 13 min with this system. 相似文献
4.
A selective detection method for biogenic amines present in highly complex matrixes was devised by employing both electrokinetic injection and on-column-derivatization capillary electrochromatographic methods. The on-column derivatization capillary electrochromatography system was evaluated by use of a capillary column (total length of 45 cm, effective length of 25 cm) fabricated using a 100-mcirom (i.d.) fused-silica capillary tube packed with 5-microm (i.d.) ODS particles that were tolerant of an alkaline environment. The column was filled with a run buffer consisting of a derivatization reagent, o-phthalaldehyde/2-mercaptoethanol, in a mixture of borate buffer (pH 10). After electrokinetic injection of a mixture of five biogenic amines (histamine, serotonin, tyramine, putrescine, cadaverine) as a test sample, the free amines entered into the anodic site of the capillary column and started to travel along the column, during which time the analytes reacted with the derivatization reagent, separated out, and were detected with an absorbance at 340 nm when high voltage was applied to the column. When this system was applied to a mixture containing 5 biogenic amines and 17 amino acids, the 5 biogenic amines plus arginine selectively entered into the capillary with the electrokinetic injection and were observed on the electrochromatogram, but none of the amino acids lacking arginine were detected. The designated method was also tested for its ability to determine the presence of biogenic amines in the crude extracts obtained from two types of aged fish. 相似文献
5.
A simple and convenient chemiluminescence detection cell was designed for capillary electrophoresis. The detection cell easily combined with capillary electrophoresis equipment. Luminol chemiluminescence was adapted for use with the detection cell. Detailed analysis and testing of the system revealed that luminol could be determined over a range of 2.5 x 10(-10)-6.5 x 10(-7) M (correlation coefficient, 0.999), with a detection limit (S/N = 3) of 2.5 x 10(-10) M (7 amol). Furthermore, each component in a mixture of glycine, glycylglycine, and glycylglycylgycine, which were labeled with isoluminol isothiocyanate, was baseline separated and sensitively detected. Moreover, the stacking procedure was applied to postcolumn detection in capillary electrophoresis. When acetonitrile stacking was used under certain conditions in the present system, chemiluminescence intensities of luminol and labeled compounds were about 1 order of magnitude higher than those obtained without stacking. The detection limit for luminol was 1.5 x 10(-11) M (S/N = 3), representing the highest sensitivity of luminol yet reported. Finally, the effect of p-iodophenol as an enhancer of luminol chemiluminescence was examined under weak alkaline conditions. The chemiluminescence intensity of luminol was approximately 2 orders of magnitude higher than that in the unenhanced reaction. A preliminary immunoassay using horseradish peroxidase-labeled anti-mouse IgG was also developed. 相似文献
6.
A novel stationary phase for capillary electrochromatography has been prepared via photoinitiated grafting of two layers of polymer chains onto the pore surface of a porous polymer monolith. To achieve the desired retention, the original monolith with optimized porous properties was grafted with an "interior" layer consisting of the ionizable monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid, followed by a "covering" layer of hydrophobic polymer chains. This technique affords monolithic CEC columns that facilitate electroosmotic flow (EOF) while preventing ionized analytes from interacting with the charged surface functionalities. Grafting of the second layer does not adversely affect the EOF. Grafting times of 30 and 60 s for AMPS and butyl acrylate, respectively, enabled the preparation of a monolith with full shielding of the analytes from the ionizable functionalities and excellent chromatographic performance. This approach allows for the first time the independent optimization of both electroosmotic flow and retention properties in CEC columns. The efficient isocratic separations of mixtures of peptides, including some that are highly basic and would be affected by unshielded charges, were routinely achieved in 40-90 s using a simple MS compatible mobile phase consisting of 20 mmol/L ammonium acetate in a 1:1 water-acetonitrile mixture. 相似文献
7.
A new method for pressurized capillary electrochromatography (pCEC) coupling with chemiluminescence (CL) detection using a modified on-column coaxial flow detection interface was developed. To evaluate the feasibility and reliability of the experimental setup, the typical CL compounds luminol and isoluminol were separated and detected by using this pCEC-CL system. A detailed investigation of CL detection interface and postcolumn CL reagent flow rate parameters was described. The excellent resolution and detection sensitivity was achieved by using 3-microm ODS-C18 packed column with 30% ACN (v/v), 5 mmol/L phosphate buffer (pH 8.0). Moreover, with the presence of Co(II) (1.0 x 10(-4) mol/L) in the mobile phase, the linear range of the concentration for luminol was 2.0 x 10(-9)-2.0 x 10(-6) mol/L with a detection limit (S/N = 3) of 2.0 x 10(-10) mol/L, and 2.5 x 10(4) theoretical plates was achieved. In addition, separation and detection of the underivatized amino acids (l-threonine and l-tyrosine) were accomplished by using a polymerized monolithic column based on the principle of the luminol-H2O2-Cu(II)-amino acid CL system. Under the optimum conditions, the mixture of amino acids was efficiently separated with satisfactory results. 相似文献
8.
Open tubular capillary electrochromatography of synthetic peptides on etched chemically modified columns 总被引:1,自引:0,他引:1
Two sets of peptides, each having structurally similar amino acid sequences, have been investigated by capillary electrochromatography (CEC) using etched chemically modified capillaries as the separation medium. In comparison to gradient RP-HPLC, the resolving power of the described CEC methods has been found to be superior. A number of variables have been examined with respect to optimization of the separation of these closely related peptides with several different etched chemically modified capillaries. These experimental variables included the nature of the bonded moiety, the pH, the organic modifier type, and the amount of organic modifier in the buffer electrolyte. Systematic variation of these parameters results in significant changes in the migrational behavior of the investigated peptides and provides important insight into the underlying molecular separation processes that prevail in open tubular CEC. Moreover, under optimized conditions, efficient separations characterized by highly symmetrical peaks were achieved. In addition, this study has permitted the long-term stability as well as the short-term and long-term reproducibility of the etched chemically modified capillaries to be documented. 相似文献
9.
On-line capillary polymerase chain reaction (PCR) coupled with laser-induced fluorescence detection was successfully demonstrated for individual DNA molecules. A single 30-microm-i.d. fused-silica capillary was used both as the reaction vessel and for isolating single molecules. SYBR green I dye was added into the reaction mixture for dynamic fluorescent labeling. Because of the small inside diameter of the capillary, PCR-amplified DNA fragments from single molecules were localized in the capillary, providing discrete product zones with concentrations at readily detectable levels. By counting the number of peaks in the capillary via electromigration past a detection window, the number of starting DNA molecules could be determined. With selective primer design, only the molecule of interest was detected. Amplification of the 110-bp fragment from an individual human beta-globin gene and the 142-bp fragment from an individual HIV-1 DNA was demonstrated. This opens the possibility of highly selective and sensitive disease diagnosis at a very early stage. 相似文献
10.
11.
The possibility is considered of increasing the concentration of singlet oxygen (SO), which is obtained in a discharge, by way of adding nitrogen dioxide to the starting gas. The presence of NO2 in the mixture must cause the removal of atomic oxygen formed in the discharge and, accordingly, a decrease in the loss of SO. The simulation of the kinetics of the products of dc discharge in a flow of oxygen is used for determining the values of expected increase in the concentration of SO, as well of the concentration of NO2, which are required for attaining the maximal effect. It is demonstrated that, at oxygen pressures of ~6 torr and higher, the addition of NO2 may produce a double and higher increase in the concentration of SO in regions of post-discharge flow with transport times of ~5–10 ms. 相似文献
12.
Gostkowski ML Curey TE Okerberg E Kang TJ Vanden Bout DA Shear JB 《Analytical chemistry》2000,72(16):3821-3825
We have examined the effects of dissolved molecular oxygen on multiphoton-excited (MPE) photochemical derivatization of serotonin (5HT) and related cellular metabolites in various buffer systems and find that oxygen has a profound effect on the formation efficiency of visible-emitting photoproducts. Previously, end-column MPE photoderivatization provided low mass detection limits for capillary electrophoretic analysis of hydroxyindoles, but relied on the use of Good's buffers to generate high-sensitivity visible signal. In the present studies, visible emission from 5HT photoderivatized in different buffers varied by 20-fold under ambient oxygen levels but less than 2-fold in the absence of oxygen; oxygen did not significantly alter the photoproduct excited-state lifetime (approximately 0.8 ns). These results support a model in which oxygen interferes with formation of visible-emitting photoproducts by quenching a reaction intermediate, an effect that can be suppressed by buffer molecules. Deoxygenation of capillary electrophoresis separation buffers improves mass detection limits for 5-hydroxyindoles fractionated in 600-nm channels by approximately 2-fold to < or =30000 molecules and provides new flexibility in identifying separation conditions for resolving 5HT from molecules with similar electrophoretic mobilities, such as the catecholamine neurotransmitters. 相似文献
13.
The effect of pore flow on the separation efficiency of capillary electrochromatography (CEC) has been studied using columns packed with particles with different pore sizes. A previously developed model was used to predict the (relative) pore flow velocity in these columns under various experimental conditions. Equations are derived describing the effect of pore flow on peak broadening in CEC. The theory has been compared with practice in the reversed-phase CEC separation of various polyaromatic hydrocarbons. It is shown, by theory and experimentally, that the mass-transfer resistance contribution to peak dispersion can be effectively eliminated when using porous particles with a high (> or =50 nm) average pore diameter. Moreover, at high pore-to-interstitial flow ratios the flow inhomogeneity contribution (the A term in the plate height equation) is also shown to decrease. Under optimal conditions, a reduced plate height of 0.3 for the nonretained compound could be obtained. It is argued that fully perfusive porous particles can be a more efficient separation medium in CEC than nonporous particles. 相似文献
14.
To expand the applications of the on-line preconcentration technique with capillary electrochromatography (CEC) to biogenic amines that have no specific chromophore or fluorophore in their molecules, a method of on-line preconcentration prior to on-column derivatization CEC is presented. A monolithic ODS capillary column (20 cm effective length x 75 microm i.d.) for CEC was fabricated using a thermal sol-gel reaction of tetraethyl orthosilicate to capture ODS particles (5-microm particle diameter) in a capillary tube. A standard model biogenic amine solution consisting of histamine, methylhistamine, and serotonin was electrokinetically injected from the anodic site of the capillary column with 5 kV, and these amines were effectively concentrated at the inlet site of the capillary column by a field-amplified sample stacking, a gradient effect mode, or both. This preconcentration occurred whenever the several types of solvent for reconstitution of the amines, e.g., water (noneluting solvent or low-conductivity solvent), 0.9% sodium chloride (noneluting solvent or high-conductivity solvent), or 60% acetonitrile in 10 mM borate buffer (pH 10) (eluting solvent) were employed. After concentration, the amines were subsequently derivatized, separated, and detected during CEC with an optimum CEC run buffer solution containing 60% acetonitrile in 5 mM o-phthalaldehyde/2-mercaptoethanol-10 mM borate buffer (pH 10) when 5 kV was continuously applied. Using the present system, equipped with a fluorescence detector instead of a UV/visible detector, the detection sensitivity for amines reached a 0.1 microM level, which increased sensitivity by a factor of 10(3) times greater than that of normal on-column derivatization CEC. 相似文献
15.
在全球变暖和能源危机的背景下,能源问题已成为全球各国战略安全的重要组成部分。氢能作为可持续的新型可再生清洁能源,对缓解全球性能源短缺具有重要意义。在众多制氢候选方案中,电解水制备氢气被认为是最可靠、最可行的途径之一。但在电解过程中,反应动力学极为迟缓的阳极析氧反应(Oxygen evolution reaction,OER)严重制约着整体反应效率。因此,开发成本相对低廉、催化剂性能优异、耐久性好的高效OER电催化剂,从而提高电解水制氢工艺技术的能源转换效果受到了广泛关注。本文首先简要阐述了析氧反应的反应机制及其性能的评价参数,接着对非贵金属催化剂的研究进行分类讨论,并列举了提高催化性能的策略和方法,最后对设计新型催化剂进行展望。 相似文献
16.
Diekmann J Adams KL Klunder GL Evans L Steele P Vogt C Herberg JL 《Analytical chemistry》2011,83(4):1328-1335
High-efficiency separation techniques, such as capillary electrophoresis (CE), coupled to a nondestructive nuclear magnetic resonance (NMR) spectrometer offer the ability to separate, chemically identify, and provide structural information on analytes in small sample volumes. Previous CE-NMR coupled systems utilized laboratory-scale NMR magnets and spectrometers, which require very long separation capillaries. New technological developments in electronics have reduced the size of the NMR system, and small 1-2 T permanent magnets provide the possibilities of a truly portable NMR. The microcoils used in portable and laboratory-scale NMR may offer the advantage of improved mass sensitivity because the limit of detection (LOD) is proportional to the coil diameter. In this work, CE is coupled with a portable, briefcase-sized NMR system that incorporates a microcoil probe and a 1.8 T permanent magnet to measure (19)F NMR spectra. Separations of fluorinated molecules are demonstrated with stopped- and continuous-flow NMR detection. The results demonstrate that coupling CE to a portable NMR instrument is feasible and can provide a low-cost method to obtain structural information on microliter samples. An LOD of 31.8 nmol for perfluorotributylamine with a resolution of 4 ppm has been achieved with this system. 相似文献
17.
Kuldvee R D'ulivo L Yohannes G Lindenburg PW Laine M Oörni K Kovanen P Riekkola ML 《Analytical chemistry》2006,78(8):2665-2671
A novel, open tubular capillary electrochromatographic method was developed for the in vitro oxidation of low-density lipoprotein (LDL) particles. Low-density lipoprotein particles with molar mass of approximately 2.5 MDa yielded a stable stationary phase at temperatures 25 and 37 degrees C and at pH values from 3.2 to 7.4. The quality of the coatings was not influenced by variations in the LDL concentration in the coating solutions (within the range of 2-0.015 mg/mL) with the coating procedure used in the study. Radiolabeled LDL stationary phases and scanning electron microscopy, employed to shed light on the location and coating density of LDL particles on the inner surface of the capillary wall, confirmed the presence of an LDL monolayer and almost 100% coating efficiency (99 +/- 8%). In addition, the radioactivity measurements allowed estimation of the amount of LDL present in a single capillary coating. Capillaries coated with human LDL particles were submitted to different oxidative conditions by changing the concentration of the oxidant (CuSO4), oxidation time, pH value, and temperature. The oxidation procedure was followed with electroosmotic flow mobility, which served as an indicator of the increase in total negative charges of LDL coatings, and by asymmetrical field flow fractionation, which measured the changes in size of the lipoprotein particles. The results indicated that oxidation of LDL was progressing with increasing time, temperature, and concentration of the oxidant as expected. The oxidation process was faster around neutral pH values (pH 6.5-7.4) and inhibited at acidic pH values (pH 5.5 and lower). 相似文献
18.
Zhenhao Ding Hiromichi Kasahara Michihiko Nakano Junya Suehiro 《IET nanobiotechnology / IET》2017,11(5):562
In this study, an electrical DNA detection method was applied to bacterial detection. DNA was extracted from bacteria and amplified by polymerase chain reaction. The microbeads were labelled with amplicons, altering their surface conductance and therefore their dielectrophoresis characteristics. Amplicon‐labelled microbeads could thus be trapped within a high‐strength electric field, where they formed a pearl chain between the electrodes, resulting in an increased conductance between the electrodes. This method reduces the amplicon detection time from 1–2 h to 15 min, compared with the conventional method. The presented method realised quantitative detection of specific bacteria at concentrations above 1 × 105 and 2.4 × 104 CFU/ml for bacterial solutions with and without other bacterial presence, respectively.Inspec keywords: microorganisms, enzymes, molecular biophysics, biochemistry, electrophoresis, bioelectric phenomena, DNA, biosensors, electrochemical electrodes, electrochemical sensors, microsensors, bioMEMS, surface conductivityOther keywords: bacterial detection, polymerase chain reaction, microbead dielectrophoresis characteristics, electrical DNA detection, surface conductance, amplicon‐labelled microbeads, high‐strength electric field, pearl chain, electrodes, amplicon detection time, quantitative detection, bacterial solutions, time 15 min to 2 h 相似文献
19.
A novel optical immunosensor setup is described which uses glucose oxidase enzyme as a label in conjunction with a luminescence lifetime-based oxygen sensor and phase measurements. The oxygen sensor membranes prepared on microporous filters were used as a solid phase on which the immunoassay was carried out. These sensing materials in combination with a new measurement setup provided high sensitivity for the detection of oxidase enzymes, being at nanogram per milliliter level, i.e., 10(-11)-10(-12) M, with respect to glucose oxidase and its conjugates. Experimental data on the sensitivity were validated using theoretical equations and calculations. Using the new measurement setup and IgG-anti-IgG as a model, a number of different sensing materials were studied aimed to optimize the immunosensor and evaluate its performance. This approach was then applied to a practical system for the detection of human lactate dehydrogenase isoenzymes. It provided similar sensitivity of approximately 1 ng/mL, which is comparable to that of standard ELISA. The attributes of the new immunosensor approach are discussed with respect to performance and versitility. 相似文献
20.
Columns in capillary electrochromatography (CEC) most commonly have the detection window located immediately after the retaining frit of the packed segment. Here, the properties of "duplex" columns having a predetection open segment between the frit and the detector window are examined with particular regard to the effect of the relative lengths of the packed and open segments on the separation of mixtures containing neutral and charged components. This configuration allows the use of columns with short packed segments in contemporary instruments for rapid separations. It is shown that, by varying the length of the packed segment, the balance of chromatographic and electrophoretic forces can be shifted, and the selectivity can be adjusted if the separation involves the interplay of both mechanisms. Expressions are presented for estimating the retention time in a duplex column if the chromatographic and electrophoretic properties of the sample components are known. The results are expected to facilitate CEC method development in selection of the respective column segment lengths for optimum separation. 相似文献