首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work aimed, on one hand, the study of the drying of green peppers, in terms of drying kinetics evaluated at 30°C, 40°C, 50°C, 60°C and 70°C, having the experimental data been fitted to different empirical kinetic models from literature. This kinetic study was then complemented with the modelling in terms of Fick's diffusion equation.On the other hand, the chemical characterization in fresh and after drying at the lowest and highest temperatures was analysed, for evaluation of the effect of drying and drying temperature on the chemical composition of the product. In this way, the analyses made were: moisture content, sugar content, proteins, ash, fat, fibre and acidity.From the results obtained, it was concluded that the empirical models that best describe the dehydration kinetics were the Page and Newton models. From the experimental data was possible to estimate the diffusivities, which range between 9.0 × 10−10 at 30°C and 8.0 × 10−9 m2 s−1 at 70°C.Moreover, it was verified that drying influences the chemical composition of the peppers, but, conversely, the influence of the drying temperature was not very significant.  相似文献   

2.
《Ceramics International》2017,43(4):3726-3733
Ta-doped lead-free 0.94NBT-0.06BT-xTa (x=0.0–1.0%) ceramics were synthesized by a conventional solid-state route. XRD shows that the compositions are at a morphotropic phase boundary where rhombohedral and tetragonal phases coexist. The depolarization temperature (Td) shifted to lower temperature with the increase of Ta content. The pyroelectric coefficient (p) of doped ceramics greatly enhanced compared with undoped material and reached a maximum of 7.14×10−4 C m−2 °C−1 at room temperature (RT) and 146.1×10−4 C m−2 °C−1 at Td at x=0.2%. The figure of merits, Fi and Fv, also showed a great improvement from 1.12×10−10 m v−1 and 0.021 m2 C−1 at x=0.0 to 2.55×10−10 m v−1 and 0.033 m2 C−1 at x=0.2% at RT. Furthermore, Fi and Fv show the huge improvement to 52.2×10−10 m v−1 and 0.48×10−10 m v−1 respectively at Td at x=0.2%. FC shows a value between 2.26 and 2.42 ×10−9 C cm−2 °C−1 at RT at x=0.2%. The improved pyroelectric properties make NBT-0.06BT-0.002Ta ceramics a promising infrared detector material.  相似文献   

3.
Equilibrium and dynamic mass transfer properties of water and solute were investigated during osmotic dehydration (OD) of radish slices in sodium chloride (NaCl) solutions. OD experiments were performed in 0.05, 0.15 and 0.25 g/g solutions at different temperatures (25, 40, 55 and 70 °C) using a brine-to-vegetable mass ratio of 15:1. An analytical solution for unsteady-state mass transfer based on Fick's second law of diffusion was used to mathematically describe water loss and solute gain curves and for the simultaneous estimation of diffusion coefficients and final dehydration–impregnation levels in product. Under such experimental conditions, effective water diffusivity was in the range of 1.85–2.74 × 10?9 m2/s, whereas solute diffusivity values were between 0.74 × 10?9 and 2.88 × 10?9 m2/s. Corresponding dehydration and impregnation levels of radish at equilibrium were estimated between 0.25 and 0.81 g water/g fresh product and 0.01–0.11 g solute/g fresh product, respectively. As demonstrated, current results may be applied to determine the set of conditions (process time, brine concentration and process temperature) yielding an osmodehydrated radish product within given specifications.  相似文献   

4.
The present work aimed, on one hand, to study of the drying of onions in terms of drying kinetics, which was evaluated at 30 °C, 50 °C and 60 °C. The experimental data was fitted to different empirical kinetic models from the literature, and this kinetic study was then complemented with the modelling if terms of Fick's diffusion equation, for estimation of the diffusion coefficients. On the other hand, the chemical characterization in fresh and dried onions at different temperatures (varying from 30 °C to 70 °C) was analysed, to evaluate the effect of drying and drying temperature on the chemical composition of the product. In this way, the analyses of moisture content, sugar content, crude protein, ash, fat, crude fibre, acidity and vitamin C were made and reported in this paper.From the results obtained it was verified that some chemical components of the onions are not affected by drying (ash, fat, protein and fibre) whereas some others are considerably influenced by drying (sugars, acidity and vitamin C). The present work allowed concluding that the three empirical models tested (Newton, Modified Page and Logarithmic) all describe relatively well the dehydration kinetics at the three temperatures analysed. Moreover, from the experimental data it was possible to estimate the diffusivities, which range between 3.33 × 10?09 m2/s at 30 °C and 8.55 × 10?09 m2/s at 60 °C.  相似文献   

5.
A new carbon molecular sieve (CMS) with a propylene/propane separation factor of approximately 27 was synthesized by a facile pyrolysis process from a gel-type strong acid cation exchange resin. The micropore shrinkage process during pyrolysis was investigated using a new high throughput adsorption technique with 48 parallel cells. This significantly reduced the characterization time. The ratio of propylene/propane adsorption rate in the CMS adsorbent changes from 1 to more than 150 when the final pyrolysis temperature changes from 550 to 1000 °C. The best performing CMS pyrolyzed at 850 °C was further characterized using a gravimetric adsorption method. The propylene and propane diffusivities are 1.0 × 10−9 and 1.1 × 10−11 cm2 s−1 at 100 kPa and 90 °C. The high propylene/propane diffusivity ratio of 90 is similar to that in zeolite 4A, while the propylene diffusivity was more than 30 times higher than that in zeolite 4A. An effluent of 90 mol% propylene was obtained from a feed of 25 mol% propylene during adsorption/desorption tests using the CMS adsorbent pyrolyzed at 850 °C in a fixed-bed configuration. The new CMS adsorbent is a promising candidate for industrial scale propylene/propane separations.  相似文献   

6.
The main objective of this study is to evaluate the effects of solar-assisted spouted bed and open sun drying on the drying rate and quality parameters of pea. Color, shrinkage, bulk and apparent densities, internal and bulk porosities, rehydration capacity and microstructure were the quality parameters investigated in dried product.Drying rate for solar-assisted spouted bed was about 3.5 times of drying rate for open sun drying. Air temperature changed between 20 °C and 27.4 °C during open sun drying while temperature of air at the inlet of solar-assisted spouted bed dryer varied between 35.3 °C and 65.5 °C during the experiments. Effective diffusivities were found to be 0.64 × 10?10 and 3.27 × 10?10 m2/s for open sun and solar-assisted spouted bed drying of pea, respectively. In color analysis, it was observed that a* value increased while b* value decreased for both drying methods. Bulk density and apparent density of peas dried under open sun was higher than that in solar-assisted spouted bed drier. In both drying methods, internal and bulk porosities decreased. Shrinkage was more for open sun dried samples. Rehydration capacity for solar-assisted spouted bed dried sample was higher than the one for open sun dried.  相似文献   

7.
Lead-free 0.94NBT-0.06BT-xLa ceramics at x = 0.0–1.0 (%) were synthesized by a conventional solid-state route. XRD shows that the compositions are at a morphotropic phase boundary where rhombohedral and tetragonal phases coexist. With increasing La3+ content pyroelectric coefficient (p) and figures of merits greatly increase; however, the depolarization temperature (Td) decreases. p is 7.24 × 10−4C m−2 °C−1 at RT at x = 0.5% and 105.4 × 10−4C.m−2 °C−1 at Td at x = 0.2%. Fi and Fv show improvements at RT from 1.12 (x = 0%) to 2.65 (x10 −10 m v−1) (x = 0.5%) and from 0.021 to 0.048 (m2.C−1) respectively. Fi and Fv show a huge increase to 37.6 × 10−10 m v−1 and 0.56 m2 C−1 respectively at Td at x = 0.2%. FC shows values of 2.10, 2.89, and 2.98 (x10−9C cm−2 °C−1) at RT at 33, 100 and 1000 (Hz) respectively. Giant pyroelectric properties make NBT-0.06BT-xLa at x = 0.2% and 0.5% promising materials for many pyroelectric applications.  相似文献   

8.
Dahi is one of the most popular fermented milk products consumed in India with excellent therapeutic properties. The initial moisture content of dahi is approximately 5.7 kg water kg dry solid−1. The shelf life of dahi is limited and hence the long term storage is possible in the form of dahi powder which can further be used as a base for formulation of health drink mix. Dahi was dried in a laboratory scale recirculatory convective air dryer to a final moisture content of 0.04 kg water kg dry solid−1. Drying characteristics of dahi were investigated under varying conditions of dahi thickness (0.003 m, 0.004 m and 0.005 m) and drying air temperatures (45°C, 50°C and 55°C) and velocities (1.5 m s−1, 2.0 m s−1 and 2.5 m s−1). Different drying models were used to simulate the observed drying data. The mathematical models were compared based on R-square and reduced chi-square values. The drying characteristics were satisfactorily described by Page, modified page, logarithmic and Midilli et al. models. The Midilli et al. model followed by modified page model provided the best representation of data. Effective moisture diffusivity computed on the basis of Fick's law varied between 2.52 × 10−10 m2 s−1 and 1.3 × 10−9 m2 s−1 under experimental drying air temperatures and sample thicknesses at air velocity 2.5 m s−1. The temperature and thickness dependence of effective moisture diffusivity was expressed by an Arrhenius type of equation. The equation showed best fit for diffusivity data at 2.5 m s−1 and varying temperatures and sample thickness.  相似文献   

9.
Reactive hot-pressing was scarcely applied to fabricate titanate ceramic waste forms designed for immobilizing high-level radioactive waste (HLW). However, compared with non-reactive processes, there is an advantage of producing high-density ceramics at reduced temperatures by reactive hot-pressing. CeIV-doped titanate composite ceramics with relative densities in excess of 99% were prepared by reactive hot-pressing at temperature as low as 1150 °C and pressure of 30 MPa for 1–4 h. The results show that low-temperature densification of the composite ceramics might be attributed to the plastic deformation under hot-pressing condition. In addition, aqueous stability testing was carried out using the standard MCC-1 static leach test method. The results demonstrate that the normalized elemental leach rate of Ca, Ce and Zr were fairly constant in a low value below 5 × 10−2 g m−2 d−1, 7 × 10−6 g m−2 d−1 and 6 × 10−6 g m−2 d−1 after 21 d.  相似文献   

10.
Average effective moisture diffusivities for both the whole- and cut-rosehips were obtained during convective drying. The effects of process variables such as air temperature, air velocity and air absolute humidity on effective moisture diffusivity were studied. The average effective moisture diffusivity in rosehip ranged between 1.45 × 10?10 and 10.3 × 10?10 m2/s for whole-rosehip and between 1.44 × 10?9 and 5.13 × 10?9 m2/s for cut-rosehip at the temperatures studied. Activation energies for convective drying were found to be 62 kJ/mol for whole-rosehips and 58 kJ/mol for cut-rosehips.  相似文献   

11.
The influence of osmotic dehydration process parameters on the efficiency of water loss and sucrose gain of pumpkins and the influence on the quality of the final product are essential for production of superior quality candied pumpkins. Mass transfer kinetics during osmotic dehydration of pumpkins were modelled by assuming Fickian diffusion of sucrose and water in unsteady state conditions, which described very well the experimental results for water loss and sugar gain. Water and sucrose effective diffusion coefficients increase significantly with temperature. Temperature and sucrose concentration had a significant influence on both water and sugar diffusion, increasing as the solution temperature increased. Significant increase in the effective water diffusivity and decrease in the sucrose effective diffusivity was observed when the sucrose solution concentration increased from 40 °Brix to 50 and 60 °Brix. From 50 to 60 °Brix, no difference in the effective diffusivities was observed. Candied pumpkins with higher sucrose content have a higher breaking stress, less breaking strain and lower work to fracture. Moreover, the product becomes harder and less elastic with increasing sucrose content, resulting in more brittle products, which seems to be related with reinforcement of the pumpkin cell wall matrix.  相似文献   

12.
The spark plasma sintering (SPS) behaviour of nano-sized Bi4Ti3O12 (BIT) and micron-sized CaBi2Nb2O9 (CBNO) powders is described. The densification process of both powders is very rapid, i.e. the densification occurs within a very narrow time interval (2–3 min using a heating rate of 100 °C min−1 and a pressure of 50 MPa). The BIT powder exhibits a lower densification onset temperature (∼650 °C) and higher maximum shrinkage rate (8.9 × 10−3 s−1 at 780 °C) than that of the CBNO powder (∼825 °C and 4.5 × 10−3 s−1 at 950 °C). Isothermal compaction studies revealed that fully dense nano-sized BIT compacts could be obtained within the temperature region 750 °C < Tiso < 850 °C while for Tiso > 850 °C compacts containing elongated platelet grains are formed. A new preparation route to produce highly textured compacts is described in detail. Appropriate pre-forms are prepared by spark plasma sintering (SPS) and these fully dense compacts are subject to superplastic deformation in the SPS unit to achieve a total compressive strain of ∼60%. This strain was achieved within a period of 1.5 min and with a maximum strain rates of 1.1 × 10−2 s−1 achieved at ∼840 °C and 1.3 × 10−2 s−1 at 1020 °C for the BIT and CBNO compacts, respectively. The X-ray studies showed that the Lotgering orientation factors of grains in the deformed BIT and CBNO compacts are 99% and 70%. The formation of highly textured compacts is suggested to be governed by a superplastic deformation-induced directional dynamic ripening mechanism.  相似文献   

13.
The phase stability and thermophysical properties of InFeO3(ZnO)m (m = 2, 3, 4, 5) compounds were investigated, which are a general family of homologous layered compounds with general formula InFeO3(ZnO)m (m = 1–19). InFeO3(ZnO)m (m = 2, 3, 4, 5) ceramics were synthesized using cold pressing followed by solid-state sintering. They revealed an excellent thermal stability after annealing at 1450 °C for 48 h. No phase transformation occurred during heating to 1400 °C. InFeO3(ZnO)3 exhibited a thermal conductivity of 1.38 W m−1 K−1 at 1000 °C, which is about 30% lower than that of 8 wt.% yttria stabilized zirconia (8YSZ) thermal barrier coatings. The thermal expansion coefficients (TECs) of InFeO3(ZnO)m bulk ceramics were in a range of (10.97 ± 0.33) × 10−6 K−1 to (11.46 ± 0.35) × 10−6 K−1 at 900 °C, which are comparable to those of 8YSZ ceramics.  相似文献   

14.
Strong attenuation of 27Al NMR signals has been observed in a magnetic field gradient, in beads of alumina melted by a CO2 laser and levitated in flowing Ar. The standard NMR diffusivity measurement interpretation of the data leads to very large (∼1.5 × 10−7 m2/s) effective diffusivity values, approximately independent of temperature between melting and 2500 °C. These high values and their weak temperature dependence contrast sharply with estimates of ionic diffusivity arising from the known, activated temperature dependences of molten alumina's viscosity and 27Al NMR line width. Our anomalously large diffusivities are attributed to bulk displacive motions, which can be visually observed in the levitated molten beads and can lead to substantial Al displacements over experimental NMR time scales. Possible origins of these motions are briefly discussed.  相似文献   

15.
《Ceramics International》2016,42(3):4532-4538
The structural, thermal and electrochemical properties of the perovskite-type compound La1−xNdxFe0.5Cr0.5O3 (x=0.10, 0.15, 0.20) are investigated by X-ray diffraction, thermal expansion, thermal diffusion, thermal conductivity and impedance spectroscopy measurements. Rietveld refinement shows that the compounds crystallize with orthorhombic symmetry in the space group Pbnm. The average thermal expansion coefficient decreases as the content of Nd increases. The average coefficient of thermal expansion in the temperature range of 30–850 °C is 10.12×10−6, 9.48×10−6 and 7.51×10−6 °C−1 for samples with x=0.1, 0.15 and 0.2, respectively. Thermogravimetric analyses show small weight gain at high temperatures which correspond to filling up of oxygen vacancies as well as the valence change of the transition metals. The electrical conductivity measured by four-probe method shows that the conductivity increases with the content of Nd; the electrical conductivity at 520 °C is about 4.71×10−3, 6.59×10−3 and 9.62×10−3 S cm−1 for samples with x=0.10, 0.15 and 0.20, respectively. The thermal diffusivity of the samples decreases monotonically as temperature increases. At 600 °C, the thermal diffusivity is 0.00425, 0.00455 and 0.00485 cm2 s−1 for samples with x=0.10, 0.15 and 0.20, respectively. Impedance measurements in symmetrical cell arrangement in air reveal that the polarization resistance decreases from 55 Ω cm−2 to 22.5 Ω cm−2 for increasing temperature from 800 °C to 900 °C, respectively.  相似文献   

16.
《Ceramics International》2016,42(13):14910-14917
The synthetic bone powder was studied as a raw materials for bone china, completely replacing natural bone ash raw materials. The physical and thermal properties of samples obtained by the two bone powders were tested and comparatively studied. Performance tests included pyroplastic deformation, flexural strength, bulk density, sintering shrinkage, water absorption, transmittance, thermal expansion coefficient and the thermal shock resistance. The phase composition and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that using synthetic bone powder could shorten the preparation time, reduce the sintering temperature and result in high-quality bone china. The pyroplastic deformation decreased from 9.14% to 7.92%, the three-point flexural strength increased from 123 MPa to 191 MPa, the light transmittance (at a 2-mm thickness) increased from 6.7% to 11.2%, the thermal expansion coefficient decreased from 8.24×10−6 °C−1 to 7.69×10−6 °C−1, and the thermal shock resistance increased from 140 °C to 180 °C. A continuous interface layer without cracks was produced by using the synthetic bone powder.  相似文献   

17.
The open-photoacoustic-cell technique to measure thermal diffusivity is described in detail. We have applied it to the measurement of thermal diffusivity of porcelain samples with four different alumina additions in the range 0–15 wt% and fired at four temperatures in the range 1270–1350°C. Thermal diffusivity is shown to vary from 4·1×10−7 m2 s−1 for a classical triaxial porcelain to 6·4×10−7 m2 s−1 for 15 wt% alumina addition made mainly at the expense of quartz when the firing temperature was 1325°C. The values of thermal diffusivity are found to be well correlated with the values of the shear and Young's modulus. Good correlation was also observed among the measured values for thermal diffusivity and those for density and mullite to quartz ratio. We conclude that the open-photoacoustic-cell technique has enough sensitivity to detect small changes in composition and microstructure of materials as complex as porcelains.  相似文献   

18.
The effects of slow-cooling and annealing conditions on dielectric loss, thermal conductivity and microstructure of AlN ceramics were investigated. Y2O3 from 0.5 to 1.25 mol% at 0.25% increments was added as a sintering additive to AlN powder and pressureless sintering was carried out at 1900 °C for 2 h in a nitrogen flowing atmosphere. To improve the properties, AlN samples were slow-cooled at a rate of 1 °C min−1 from 1900 to 1750 °C, subsequently cooled to 970 °C at a rate of 10 °C min−1 and then annealed at the same temperature for 4 h. AlN and YAG (5Al2O3/3Y2O3) were the only identified phases from XRD. AlN doped with 0.5 and 0.75 mol% Y2O3 had a low loss of <2.0 × 10−3 and a high thermal conductivity of >160 W m−1 °C−1.  相似文献   

19.
《Ceramics International》2016,42(3):4361-4369
We study the thermal, mechanical and electrical properties of B4C, BCN, ZrBC and ZrBCN ceramics prepared in the form of thin films by magnetron sputtering. We focus on the effect of Zrx(B4C)1−x sputter target composition, the N2+Ar discharge gas mixture composition, the deposition temperature and the annealing temperature after the deposition. The thermal properties of interest include thermal conductivity (observed in the range 1.3–7.3 W m−1 K−1), heat capacity (0.37–1.6×103 J kg−1 K−1 or 1.9–4.1×106 Jm−3 K−1), thermal effusivity (1.6–4.5×103 J m−2 s−1/2 K−1) and thermal diffusivity (0.38–2.6×10−6 m2 s−1). We discuss the relationships between materials composition, preparation conditions, structure, thermal properties, temperature dependence of the thermal properties and other (mechanical and electrical) properties. We find that the materials structure (amorphous×crystalline hexagonal ZrB2-like×nanocrystalline cubic ZrN-like), more than the composition, is the crucial factor determining the thermal conductivity and other properties. The results are particularly important for the design of future ceramic materials combining tailored thermal properties, mechanical properties, electrical conductivity and oxidation resistance.  相似文献   

20.
《Ceramics International》2017,43(14):10763-10769
A kind of dry mixing and pressing process was introduced to prepare expanded graphite/carbon fiber cement composites (EG-CFRC). Significant effect of moisture on the thermoelectric properties of EG-CFRC was observed. The higher the moisture content is, the greater the absolute Seebeck coefficient. The maximum of absolute Seebeck coefficient 11.59 μV/°C was obtained with moisture of 14.98% at 33 °C. Simultaneously, the maximum of electrical conductivity 0.78 S cm−1 was got with moisture of 11.44%. Furthermore, the largest power factor 7.85×10−4 µW m−1 K−2 was calculated at 33 °C with moisture of 11.44%. The carrier scattering, polarization effects and high density defects interface of EG-CFRC are attributed to the enhancement of thermoelectric properties in the case of higher moisture content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号