首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
Yellow emitting Ca2BO3Cl:Eu2+ phosphor was prepared by solid state reaction at 900 °C. The particle was monoclinic crystal structure, and showed broad band emission at around 540–590 nm due to the 5d–4f transition. Single Ca2BO3Cl:Eu2+ phosphor converted white LED exhibited the CIE coordinates of (0.3441, 0.2675) with low CRI of 67.4. Hybridization of Ca2BO3Cl:Eu2+ with 535 and 610 nm emitting CdSe/ZnS nanocrystals contributed to increasing white spectrum and generated the warm color temperature (4055 K) with high CRI (83.9) of white light. The acceptable color stability was also observed from (0.3687, 0.3051) at 20 mA to (0.3645, 0.3101) at 80 mA.  相似文献   

2.
Ru/TiO2 and Ru/Al2O3 were prepared by wet impregnation of TiO2 and Al2O3, and tested in the catalytic decomposition of dichloromethane (DCM). Ru/TiO2 catalyst presents the higher activity than Ru/Al2O3 catalyst, with 50% and 90% conversion occurring at 235 and 267 °C, respectively. Moreover, the higher stability on Ru/TiO2 catalyst is observed, which can be related to ready removal of Cl species produced during DCM decomposition. The chlorine uptake on Ru/TiO2 catalyst is estimated at 240 °C to be 0.36 mmol Cl/gcat, while on Ru/Al2O3, the value is 1.46 mmol Cl/gcat.  相似文献   

3.
The B2O3 added Ba(Zn1/3Nb2/3)O3 (BBZN) ceramic was sintered at 900 °C. BaB4O7, BaB2O4, and BaNb2O6 second phases were found in the BBZN ceramic. Since BaB4O7 and BaB2O4 second phases have an eutectic temperature around 900 °C, they might exist as the liquid phase during sintering at 900 °C and assist the densification of the BZN ceramics. Microwave dielectric properties of dielectric constant (ɛr) = 32, Q × f = 3500 GHz, and temperature coefficient of resonance frequency (τf) = 20 ppm/°C were obtained for the BZN with 5.0 mol% B2O3 sintered at 900 °C for 2 h. The BBZN ceramics were not sintered below 900 °C and the microwave dielectric properties of the BBZN ceramics sintered at 900 °C were very low. However, when CuO was added, BBZN ceramic was well sintered even at 875 °C. The liquid phase related to the BaCu(B2O5) second phase could be responsible for the decrease of sintering temperature. Good microwave dielectric properties of ɛr = 36, Q × f = 19,000 GHz and τf = 21 ppm/°C can be obtained for CuO doped BBZN ceramics sintered at 875 °C for 2 h.  相似文献   

4.
Nano-sized calcium hydroxyapatite, [Ca10(PO4)6(OH)2] has been synthesized by the sol–gel combustion method using calcium nitrate and di-ammonium hydrogen phosphate as precursors in the aqueous medium. Triethyl phosphite was used as a phosphate precursor for alcohol mediated combustion. The aqueous and alcohol media were employed for the investigation of combustion synthesis in the presence of various fuels such as urea, glycine, alanine, hydrazine and hexamine. The metal-to-fuel ratio in the synthesis was maintained at 1 to facilitate complete combustion and the Ca/P ratio was maintained at 1.67 to aid the stoichiometric formation of hydroxyapatite. The combustion products were calcined at 800 °C for 10 h and were characterized by powder XRD, FT-IR, HR-SEM and HR-TEM techniques. All the five fuels used under the alcohol mediated combustion, resulted in forming phase pure hydroxyapatite; whereas the aqueous mediated combustion method yielded biphasic calcium phosphate containing Ca10(PO4)6(OH)2 and β-TCP depending on the nature of the fuel.  相似文献   

5.
When [PtIV(NH3)5Cl]3 + is deprotonated the complex [PtIV(NH3)4(NH2)Cl]2 + is formed. Upon NH2  PtIV LMCT excitation (λirr > 250 nm) a reductive elimination takes place: [PtIV(NH3)4(NH2)Cl]2 +  [PtII(NH3)3Cl]+ + N2H4 + H+. Since Pt(II) ammine complexes can be reoxidized to Pt(IV) by H2O2 it is suggested that in a cyclic process the overall reaction could proceed according to the equation: 2 NH3 + H2O2  N2H4 + 2 H2O.  相似文献   

6.
《Ceramics International》2017,43(8):6221-6231
In the present work, an investigation of the mechanosynthesis of calcium hydroxyapatite (HA, Ca10(PO4)6(OH)2) from a mixture of calcium oxide (СаО) and ammonium hydrophosphate ((NH4)2HPO4) and mechanotreatment of HA in a planetary mill with the use of steel drums and milling body has been performed. The obtained results have shown that the mechanosynthesis of crystalline nanodisperse HA proceeds through the stage of formation of an amorphous material. The temperature treatment of HA powders at 1000 °C has enabled us to establish the influence of the treatment time on the phase composition of the powders and establish the following sequence of phase transformations: Ca10(PO4)6(OH)2→β-Ca3(PO4)2 (tmilling~2 h), β-Ca3(PO4)2→α-Ca3(PO4)2 (tmilling~5 h), β-,α-Ca3(PO4)2→Ca10(PO4)6(OH)2 (tmilling~7 h).The mechanosynthesis and mechanotreatment of hydroxyapatite in steel drums with steel balls is accompanied by the contamination of hydroxyapatite by their wear debris (iron + manganese). A large part of oxidized iron forms superparamagnetic inclusions distributed in HA powder. A small part of Fe3+ and Mn2+ ions from the steel wear debris enters into the hydroxyapatite lattice, substituting Ca2+ ions. As a result, a nanocomposite powder consisting of hydroxyapatite, alloyed by Fe3+ and Mn2+ ions and ferrite inclusions forms. The phase composition of HA powders, the degree of their alloying by Fe3+ and Mn2+ ions, and the content of ferrite inclusions can be controlled by changing the time of mechanotreatment.  相似文献   

7.
In order to provide an exact knowledge of the phase transitions and melting relationships of Ca3(PO4)2 (TCP) in the presence of zinc, a revisited version of the rich-Ca3(PO4)2 region of the phase diagram of the system Ca3(PO4)2-Zn3(PO4)2 has been established in the present work. Experimental determination of this diagram was carried out by solid-state reactions of samples prepared from pure NH4H2PO4, CaCO3 and ZnO raw materials. X-ray Diffraction, Differential Thermal Analyses and Field Emission Scanning Electron Microscopy studies allowed to revise the α, β, α + β-TCP phase stability fields, delimitating for the first time the biphasic α + α′-TCP field and the melting relationships in the high temperature region of the system. The results allowed to determine two peritectic invariant points, at ≈1400 °C for 95 mol% Ca3(PO4)2 and at ≈1490 °C for ≈99.5 mol% Ca3(PO4)2.  相似文献   

8.
We report the development of a ceramic injection moulding (CIM) process to produce complex-shaped structures using high-performance microwave ceramic materials. In particular, we describe the synthesis methods and the structural, chemical and dielectric properties of Ba(Zn1/3Ta2/3)O3 (BZT) doped with Ni and Zr ceramics produced using ceramic injection moulding. Sintering the ceramic injection moulded Ba(Zn1/3Ta2/3)O3 to a relative density of ∼94% was possible at a temperature of 1680 °C and a time of 48 h. The best samples to date exhibit a dielectric constant, ɛr, of ∼30, a Q value, of ∼31,250 (i.e. tan δ < 3.2 × 10−5) at 2 GHz, and a temperature coefficient of resonance frequency, τf, of 0.1 ppm/°C.  相似文献   

9.
Recent papers report that BaZn1/3Ta2/3O3 (BZT) ceramic can be sintered at a temperature as low as 1050 °C owing to the use of flux agents like B2O3 + LiF combined with a slight non-stoichiometry, whereas its usual sintering temperature is 1400 °C. This low sintering temperature (below the Cu's melting point = 1083 °C) opens the route to fabricate copper based multilayer ceramic capacitors, in condition that a reductive atmosphere is used during the sintering. This paper presents the effect of three various sintering atmospheres (air, H2 (1%) in N2 and H2 (1%) in Ar) on the stability and the dielectric properties of BZT. It is researched a suitable sintering atmosphere to prevent Cu from oxidation and to preserve the dielectric properties of BZT. Using the appropriate atmosphere, copper based multilayer ceramic capacitors, with attractive dielectric properties, have been successfully processed.  相似文献   

10.
A lead-free, non-alkali La2O3–Al2O3–B2O3 (LAB) glass with Al2O3 filler had been investigated for low temperature co-firing ceramic (LTCC) application. The glass forming window and several physical properties of the LAB systems were investigated by ICP, TMA, XRD, DSC, and SEM/EDS. The results show that the densification and crystallization temperatures of LAB/Al2O3 were between 700 °C and 950 °C and depended greatly on the formulation. Crystalline phase LaBO3 (LB) and LaAl2B3O9 (L2A3B) crystallized starting at 825 °C and 925 °C, respectively. High degree of densification and crystallization of one glass–Al2O3 composition (L30A) was observed with the microstructure composed of tabular L2A3B grains interlocking with submicron Al2O3 and LB grains.  相似文献   

11.
The hot corrosion behaviors of Sr(Y0.05Yb0.05Zr0.9)O2.95 (SYYZ) ceramic were investigated in Na2SO4, V2O5, and Na2SO4 + V2O5 salts mixture, respectively. Na2SO4 did not react with SYYZ ceramic at 900, 950 and 1000 °C. m-ZrO2, YVO4 and YbVO4 were the main corrosion products on the SYYZ ceramic surface in V2O5 at 800 and 900 °C, whereas Sr3V2O8 and t-ZrO2 appeared at 1000 °C. In Na2SO4 + V2O5 salts mixture, the corrosion products were Sr3V2O8 and t-ZrO2 at 800 and 900 °C on the SYYZ ceramic surface, however, a new phase of SrZrO3 developed at 1000 °C. The phase transformation and chemical interaction are the primary corrosion mechanisms for degradation of SYYZ ceramic.  相似文献   

12.
《Ceramics International》2017,43(2):1781-1787
Excellent high temperature mechanical properties of melt-grown Al2O3-based eutectics have previously been demonstrated in samples prepared by directional solidification methods. In this study, the deformation behaviour of melt-grown Al2O3/YAG/ZrO2 eutectic bulk prepared by a non-directional solidification method was investigated by means of compressive tests in a temperature range of 1200–1700 °C. The non-directionally solidified eutectic bulk ceramic has a colony structure and is polycrystalline. It begins to show ductility and has a compressive strength of 320 MPa at 1500 °C, which is much higher than that of the sintered ceramic with the same composition. However, its plastic deformability is insufficient, even at 1700 °C (just below the melting point of 1715 °C), and cracking occurs during compressive deformation.  相似文献   

13.
A new bi-oxo capped molybdenum carboxylate, [Mo33-O)2(μ-O2CCH2Cl)6(H2O)2(OH)]+, was synthesized by refluxing [Mo33-O)2(μ-O2CCH3)6(H2O)3]2 + in chloroacetic acid for 20 h (T = 110 °C). Using ion-exchange chromatography (0.5 M NaClO4 eluant), the trinuclear molybdenum ion was isolated and allowed to crystallize slowly (T = 4 °C) as the perchlorate salt (yield 23%). Upon dissolution of the compound in methanol-d4, substitution of the terminal ligands for solvent occurs readily in which the observed exchange rate constant is kobs298K = 5.3 × 10 5 0.3) s 1 and activation parameters equal to ΔH3 = 130 (± 10) kJ mol 1 and ΔS3 = 111 (± 33) J mol 1 K 1. From the kinetic data, we find that ligand substitution follows a dissociative pathway and that rates of substitution are faster than expected when compared to the molybdenum acetate analog. Herein, we report the synthesis, crystallographic study, and substitution reactivity of a new molybdenum bi-oxo capped cluster with bridging chloroacetate ligands.  相似文献   

14.
《Ceramics International》2017,43(18):16451-16456
Finding efficient templates for the nanostructuring of materials is a key point. Here, the niobium (V) - and tantalum (V) oxide ceramics nanopowders have been synthesized by a hard-templating approach by using the tricalcium phosphate biomaterial (Ca3(PO4)2.xH2O) as template agent. The oxide ceramics were investigated by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, nitrogen physisorption and Scanning Electron Microscopy (SEM). It was observed that the surface properties (specific surface areas, pore volumes) of the Nb2O5 and Ta2O5 powders were strongly dependent of the amount of the Ca3(PO4)2.xH2O template previously used in the preparation of the [oxide ceramics/template] composites. For instance, with a Ca3(PO4)2.xH2O/ceramic salt weight ratio ranging from 0 to 1, the specific surface areas of Nb2O5 and Ta2O5 were gradually enhanced of 48–166 m2/g and 5–84 m2/g, respectively. The pore volumes were increased as well. The use of the eco-friendly tricalcium phosphate material (Ca3(PO4)2.xH2O) as template in the hard-templating approach may be suitable and efficient in the aim of synthesizing materials with enhanced surface properties.  相似文献   

15.
The formation kinetics of tricalcium aluminate (C3A) and calcium sulfate yielding calcium sulfoaluminate (C4A3$) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C3A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca3Al2O6 + CaSO4  Ca4Al6O12(SO4) + 6CaO was the primary reaction < 1350 °C with and activation energy of 231 ± 42 kJ/mol; while the decomposition reaction 2Ca4Al6O12(SO4) + 10CaO  6Ca3Al2O6 + 2SO2  + O2 ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C4A3$ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C4A3$ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca2 + and SO42  were the diffusive species in both the formation and decomposition reactions.  相似文献   

16.
Solid solutions of Co and Mg diphosphates with compositions Co2?xMgxP2O7 (x = 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5 and 1.8) have been prepared and characterized for the first time as alternative low-toxicity blue ceramic pigments. The compositions were prepared through the conventional coprecipitation route and calcined up to 1000 °C/2 h. Samples were characterized by thermal analysis, XRD, SEM/EDX, UV–vis-NIR spectroscopy and colour measurements (CIE-L*a*b*). Isostructural Co2?xMgxP2O7 diphosphate solid solutions (monoclinic system and P21/c spatial group) formed successfully within the studied range of compositions, accompanied only by a minor quantity of residual Co or Mg orthophosphates (M3(PO4)2). Interestingly, the obtained solid solutions developed nice blue-violet colourations even with high Mg doping after enamelling within double-firing (x = 1.5–1.8) and single-firing (x = 1.0–1.5) ceramic glasses. These optimal compositions containing a minimized Co amount (measured values around 7–16 wt%) could be therefore less toxic alternatives to the conventional Co3(PO4)2 blue ceramic pigment.  相似文献   

17.
A new oxide-salt composite electrolyte, YSZ–K3PO4–Ca3(PO4)2, shows proton conductivity in the order of 10?2 S/cm at 700 °C. The proton transport number, determined using a hydrogen concentration cell, rises from more than 93% at 550 °C to 99% at 700 °C. The composite electrolyte is chemically stable in H2S containing atmosphere, and so is a good candidate electrolyte material for H2S solid oxide fuel cells applications.  相似文献   

18.
The effects of Nb2O5 addition on the dielectric properties and phase formation of 0.8BaTiO3-0.2Bi(Znl/2Til/2)O3 (0.8BT-0.2BZT) ceramics were investigated. The desired perovskite phase was achieved with Nb2O5 doping levels being in the range of 0.5 wt.%–3.0 wt.%. The 0.8BT-0.2BZT ceramics doped with 1.5 wt.% Nb2O5 was found to possess a moderate dielectric constant (ε = 1170) and low dielectric loss (tanδ = 1%) at room temperature and 1 kHz frequency, showing a flat dielectric behavior over the temperature range of −55 °C–200 °C. Based on this composition, the X9R-MLCC (multilayer ceramic capacitor) with Ag0.7-Pd0.3 electrode was sintered at 1060 °C. The optimized capacitance of the MLCC is 26.5 nF, with dielectric loss tanδ of 0.9% and electrical resistance of 4.50 × 1011 Ω at room temperature, leading to a high time constant of 11,900 s, decreasing to 175 s at 200 °C, being one order higher than those of commercial X7R MLCC. In addition, the equivalent series resistance (ESR) was found to be on the order of 0.2 mΩ at 2 MHz, much lower than that of the DC Bus Capacitor Bank for the automotive inverters (where the desired characteristic is <3 mΩ). All these characteristics of the newly developed MLCC will benefit the high temperature and high power capacitor applications.  相似文献   

19.
Polycrystalline GdSm1?xCaxZr2O7?x/2 (0  x  0.20) ceramics have been prepared by the solid-state reaction method. The effects of CaO addition on the microstructure and electrical properties of the pyrochlore-type GdSmZr2O7 ceramic were investigated. GdSm1?xCaxZr2O7?x/2 (x  0.05) ceramics exhibit a pyrochlore-type structure; however, GdSm1?xCaxZr2O7?x/2 (0.10  x  0.20) ceramics consist of the pyrochlore-type structure and a small amount of CaZrO3. The total conductivity of GdSm1?xCaxZr2O7?x/2 ceramics follows the Arrhenius relation, and gradually increases with increasing temperature from 723 to 1173 K. GdSm1?xCaxZr2O7?x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10?4–1.0 atm at each test temperature. The highest total conductivity is about 1.20 × 10?2 S cm?1 at 1173 K for the GdSm0.9Ca0.1Zr2O6.95 ceramic.  相似文献   

20.
Five Ba(Co1/3Nb2/3)O3 samples sintered at different temperatures (form 1350 to 1550 °C), one Ba(Mg1/3Ta2/3)O3 and a Ba(Mg1/3Nb2/3)O3 sample were examined by Raman scattering to reveal the correlation of the 1:2 ordered perovskite structure with the microwave properties, such as dielectric constant and Q factors. The Ba(Co1/3Nb2/3)O3 sample sintered at 1400 °C, which possesses the highest microwave Q value and the lowest dielectric constant among five Ba(Co1/3Nb2/3)O3 samples, has the narrowest width and the highest frequency of the stretch mode of oxygen octahedron (i.e. A1g(O) near 800 cm−1). We found that the dielectric constant is strongly correlated with the Raman shift of A1g(O) stretch modes, and the width of A1g(O) stretch mode reflects the quality factor Q × f value in the 1:2 ordered perovskite materials. This concludes that the oxygen octahedron play an important role of the material's microwave performance. Based on the results of Q × f values and the lineshapes of A1g(O) stretch mode, we found that the propagation of microwave energy in Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3 shows weak damping behavior, however, Ba(Co1/3Nb2/3)O3 samples sintered at different temperature exhibit heavily damped behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号