首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While most of the previous studies have focused on the processing and electrical properties of KNN-based ceramics, very little research has been carried out to evaluate their mechanical behavior. This work presents for the first time an examination of the fracture toughness, KIC, of the most widely studied (KxNa1 ? x)NbO3 (KNN)-based lead-free ceramics modified with lithium, tantalum and antimony. The samples were produced through the conventional mixed-oxide route and the KIC values were measured using the single edge V-notched beam (SEVNB) method under four-point bending. The mean KIC values were determined to be 0.48 ± 0.18 MPa m1/2 for (K0.48Na0.48Li0.04)NbO3, 0.8 ± 0.18 MPa m1/2 for (K0.5Na0.5)(Nb0.9Ta0.1)O3, 0.86 ± 0.04 MPa m1/2 for (K0.48Na0.48Li0.04)(Nb0.9Ta0.1)O3 and 1.06 ± 0.21 MPa m1/2 for (K0.48Na0.48Li0.04)(Nb0.86Ta0.1Sb0.04)O3 compositions. The microstructure, phase structure and dielectric constant values of the samples have been used to correlate the results of the KIC values.  相似文献   

2.
Iron-based oxides are considered as promising consumable anode materials for high temperature pyroelectrolysis. Phase relationships, redox stability and electrical conductivity of Fe3?xAlxO4 spinels were studied at 300–1773 K and p(O2) from 10?5 to 0.21 atm. Thermogravimetry/XRD analysis revealed metastability of the sintered ceramics at 300–1300 K. Low tolerance against oxidation leads to dimensional changes of ceramics upon thermal cycling. Activation energies of the total conductivity corresponded to the range of 16–26 kJ/mol at 1450–1773 K in Ar atmosphere. At 1573–1773 K and p(O2) ranging from 10?5 to 0.03 atm, the total conductivity of Fe3?xAlxO4 is nearly independent of the oxygen partial pressure. The conductivity values of Fe3?xAlxO4 (0.1  x  0.4) at 1773 K and p(O2) ~10?5 to 10?4 atm were found to be only 1.1–1.5 times lower than for Fe3O4, showing high potential of moderate aluminium additions as a strategy for improvement of refractoriness for magnetite without significant deterioration of electronic transport.  相似文献   

3.
Transparent lutetium aluminum garnet (Lu3Al5O12, LuAG) was fabricated by reactive spark plasma sintering. The effect of sintering temperature on the crystal phase, microstructure, transparency and mechanical properties of LuAG bodies was investigated. Fully dense and single-phase LuAG bodies were obtained at sintering temperatures 1573–1923 K. The average grain size increased from 0.18 to 0.52 μm with increasing sintering temperature from 1573 to 1773 K, and grain growth became significant at 1823 K. Transmittance showed a maximum value of 77.8% at 2000 nm at a sintering temperature of 1773 K after annealing at 1423 K in air for 43.2 ks. The Vickers hardness increased from 14.2 to 17.2 GPa with decreasing grain size from 7.45 to 0.23 μm.  相似文献   

4.
Silicon nitride + 1 wt% graphene platelet composites were prepared using various graphene platelets (GPL) and two processing routes; hot isostatic pressing (HIP) and gas pressure sintering (GPS). The influence of the processing route and graphene platelets’ addition on the fracture toughness has been investigated. The matrix of the composites prepared by GPS consists of Si3N4 grains with smaller diameter in comparison to the composites prepared by HIP. The indentation fracture toughness of the composites was in the range 6.1–9.9 MPa m0.5, which is significantly higher compared to the monolithic silicon nitride 6.5 and 6.3 MPa m0.5. The highest value of KIC was 9.9 MPa m0.5 in the case of composite reinforced by the smallest multilayer graphene nanosheets, prepared by HIP. The composites prepared by GPS exhibit lower fracture toughness, from 6.1 to 8.5 MPa m0.5. The toughening mechanisms were similar in all composites in the form of crack deflection, crack branching and crack bridging.  相似文献   

5.
Plates of Al2O3–YSZ and Al2O3–YAG eutectic composition with a thickness from 0.1 to 1 mm were prepared by directional solidification using a diode laser stack. The melt processed regions of plates exhibited colony microstructure consisting of finely dispersed phases. Due to the curved shape of the melted pool, the growth rate depends on the distance to the surface plate, decreasing from top to bottom. In this way, the microstructure characteristic length changes as a function of the distance to the plate surface. Vickers indentations and piezo-spectroscopy measurements were done on longitudinal and transverse cross-sections of the samples at different depths. From these measurements, we concluded that the Vickers hardness (HV), indentation fracture toughness (KIC) and residual stresses (σh) of the plates were mainly independent from the distance to the surface. The mean values that we obtained in the Al2O3–YSZ plates were HV = 16 GPa, KIC = 4.2 MPa m1/2 and σh = −0.33 GPa, and in the Al2O3–YAG plates were HV = 16 GPa, KIC = 2.0 MPa m1/2, and σh = −0.1 GPa. These values are similar to those found in directionally solidified eutectic rods.  相似文献   

6.
The influence of sintering temperature, holding time and pressure condition on densification and mechanical properties of bulk titanium carbide (TiC) fabricated by SPS sintering has been systematically investigated. Experimental data demonstrated that relative density and Vickers hardness (HV) increase with sintering temperature and holding time, but fracture toughness (KIC) was not significantly influenced by sintering parameters. The HV and relative density of samples consolidated by SPS technique at 1600 °C for 5 min under 50 MPa pressure (applied entire sintering cycle) reached 30.31 ± 2.23 GPa and 99.90%, respectively. HV values of ~24–30 GPa and KIC of ~3.7–5 MPa m1/2 were obtained in all bulk samples with relative densities of 95.61–99.90% when fabricated under various conditions presented above, without abnormal grain growth. More pronounced effects of pressure condition on grain growth (promoted by grain-boundary diffusion) than on densification were observed. The relationship of fracture toughness and fracture mode is also discussed.  相似文献   

7.
The effect of testing variables on toughness of single edge “V” notched beams (4 mm × 6 mm × 50 mm, α = 0.6) of a fine grained mullite (d50 = 0.7 ± 0.5 μm) in three points bending (span = 40 mm) is analysed. Mullite was selected as case material because it presents flat R-curve and subcritical crack propagation. Stable fracture was reached by using the CMOD as control variable (0.001 and 0.018 mm/min). Results for stable test and unstable displacement (0.05 mm/min) controlled tests are analysed. KIC has been calculated from maximum loads, KICp, and from the total fracture energy determined in stable tests, KICγ. The fact that for materials with flat R-curve both KIC values are coincident has been used as criterion for adequacy of the test. Stable fracture at high deformation rates is required to fulfil KICp = KICγ. Under such conditions, an intrinsic KIC = 0.86 ± 0.06 MPa m1/2, less than one half of those previously reported has been obtained.  相似文献   

8.
《Ceramics International》2016,42(6):7001-7013
Dense (95–98.6%) bulk boron carbide prepared by Spark Plasma Sintering (SPS) in Ar or N2 atmospheres were subject to three-point flexural tests at room and at 1600 °C. Eight different consolidation conditions were used via SPS of commercially available B4C powder. Resulting specimens had similar grain size not exceeding 4 µm and room-temperature bending strength (σ25 °C) of 300–600 MPa, suggesting that difference in σ25 °C is due to development of secondary phases in monolithic boron carbide ceramics during SPS processing. To explain such difference the composition of boron carbide and secondary phases observed by XRD and Raman spectroscopy. The variation in intensity of the Raman peak at 490 cm−1 of boron carbide suggests modification of the boron carbide composition and a higher intensity correlates with a higher room-temperature bending strength (σ25 °C) and Vickers hardness (HV). Secondary phases can modify the level of mechanical characteristics within some general trends that are not dependent on additives (with some exceptions) or technologies. Namely, HV increases, σ25 °C decreases, and the ratio σ1600 °C/σ25 °C (σ1600 °C – bending strength at 1600 °C) is lower when fracture toughness (KIC) is higher. The ratio σ1600 °C25 °C shows two regions of low and high KIC delimited by KIC=4.1 MPa m0.5: in the low KIC region, boron carbide specimens are produced in nitrogen.  相似文献   

9.
A NiO-added Pb((Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80)O3 system is prepared and investigated. The results reveal that Ni doping induces a phase transformation from the morphotropic phase boundary to the tetragonal phase side. Above the solubility limit of 0.3 wt% in NiO form, excess Ni ions segregate at the grain boundaries and triple junctions, which facilitate the formation of a liquid phase with excess PbO and lead to remarkable grain growth. The mechanical behavior (Vickers hardness (Hv) and fracture toughness (KIC)) can be tailored by controlling the content of additive; this is accompanied by a transition in the fracture mode changed from transgranular without NiO additive to intergranular with 1.0 wt% NiO additive. Moreover, the NiO addition weakens the dielectric relaxor behavior and improves the piezoelectric properties simultaneously. The 0.2PZN–0.8PZT with 0.5 wt% NiO addition shows good transduction coefficient (d33·g33 = 10,050 × 10?15 m2/N) and large fracture toughness (KIC = 1.35 MPa m1/2).  相似文献   

10.
A very tough zirconia matrix is interesting to fabricate alumina-toughened zirconia (ATZ) and composites generally processed from 3Y-TZP do not exhibit very high toughness. The strategy of lowering the yttria content to increase toughness however is normally associated with an increased hydrothermal aging susceptibility. In this work, a 0.4 mol% La2O3 doped 2Y-TZP matrix was investigated to realize a 20 wt.% alumina toughened zirconia composite with a substantially high aging resistance. The higher transformation toughening in the composite shifted the V-KI towards higher KI values, while preserving the slope of the curve, resulting in a threshold KI0 of 4.0 MPa m1/2 and fracture toughness (KIC) of 7.1 MPa m1/2. These composites can offer a better compromise between aging and crack resistance than traditional 3Y-TZPs and plain ATZ composites without La2O3 doping.  相似文献   

11.
Transparent SiO2 bodies were prepared by pressureless sintering (PLS) and spark plasma sintering (SPS). The effects of sintering and annealing temperature on the transmittance of the SiO2 bodies were investigated. The SiO2 bodies sintered by SPS and PLS at 1073–1573 K were amorphous. With increasing the sintering temperature to 1673 K, the SiO2 bodies sintered by PLS were crystallized while those sintered by SPS were still amorphous. The relative density of the SiO2 bodies sintered by SPS was 98.5% at 1373 K and 100% at 1573 K, whereas that sintered by PLS was 92.6% at 1373 K and 98.9% at 1573 K. The transmittance was 91.0% and 81.5% at a wavelength (λ) of 2 μm for the SiO2 sintered bodies by SPS and PLS, respectively. In the ultraviolet range, the transmittance of the SiO2 bodies sintered by SPS at 1573 K was about 40% at λ = 200 nm and increased to 75% after annealing at 1073 K for 1 h, which was about three times of the transmittance of the SiO2 bodies sintered by PLS (24.8%).  相似文献   

12.
Silicon carbide (SiC) layers were deposited on silica (SiO2) glass powder by rotary chemical vapor deposition (RCVD) to form SiO2 glass (core)/SiC (shell) powder; this powder was consolidated by spark plasma sintering (SPS). SiO2 glass powder with a particle size of 250 nm was coated with 5–10-nm-thick SiC layers. The resultant SiO2 glass (core)/SiC (shell) powder was consolidated to form a nano-grain SiO2 glass composite at a relative density above 90% by SPS in the sintering temperature range of 1573–1823 K. The Vickers hardness and fracture toughness of the SiO2 glass composite at 1723 K were found to be 14.2 GPa and 5.4 MPa m1/2, respectively.  相似文献   

13.
《Ceramics International》2016,42(16):18283-18288
Short carbon fibre (Cf) reinforced silicon carbide (SiC) composites with 7.5 wt% alumina (Al2O3) as sintering additive were fabricated using spark plasma sintering (SPS). Three different Cf concentrations i.e. 10, 20 and 30 wt% were used to fabricate the composites. With increasing Cf content from 0 to 20 wt%, micro-hardness of the composites decreased ~28% and fracture toughness (KIC) increased significantly. The short Cf in the matrix facilitated enhanced fracture energy dissipation by the processes of crack deflection and bridging at Cf/SiC interface, fibre debonding and pullout. Thus, 20 wt% Cf/SiC composite showed >40% higher KIC over monolithic SiC (KIC≈4.51 MPa m0.5). Tribological tests in dry condition against Al2O3 ball showed slight improvement in wear resistance but significantly reduced friction coefficient (COF, μ) with increasing Cf content in the composites. The composite containing 30 wt% Cf showed the lowest COF.  相似文献   

14.
Reproducibility of indentation fracture resistance, KIFR of silicon carbides sintered with B and C was evaluated by a round robin with ten laboratories. When the crack length was measured with an optical microscope at a low magnification of ~100×, KIFR varied widely from 3.43 to 4.20 MPa m1/2, whereas those obtained by a powerful microscopy with both an objective lens of 40× and a traveling stage exhibited a consistent value of 3.20±0.12 MPa m1/2. The wide scatter of KIFR for the former measurements was attributed mainly to the variation in misreading of the crack length. It was revealed that the high resolving power of the objective lens of 40× enabled to find exact crack tips easily, which resulted in the good matching of KIFR between laboratories for the latter case. It was suggested that the observation of indentations with powerful optics was effective for improving the reproducibility of the IF method.  相似文献   

15.
Silicon nitride ceramics have been densified with polymer-derived SiAlOC sintering aid. Dense samples were prepared at relatively mild temperatures (1600 °C) from blends with 30 wt.% of pyrolysed SiAlOC additives. Decreasing the SiAlOC aid content to 15 wt.% resulted in porous Si3N4 samples (~85% rel. density). The properties of dense samples were influenced by the remaining SiAlOC glass (HV = 15.5 GPa, KIC = 4 MPa m1/2). Increasing the sintering temperature to 1780 °C for 5 min significantly changed the phase composition and properties of the composites. The major phase was O′-sialon in the sintered samples. Additional annealing of the samples at 1530 °C for 16 h further decreased the amount of the residual glassy phase and consequently affected the mechanical properties. The Vickers hardness of dense samples was 18.5 GPa and the fracture resistance ranged between 4.0 and 4.5 MPa m1/2. The compressive creep test (1400 °C/100 MPa/24 h) of the SNA30-A sample sintered at 1600 °C for 30 min without an additional crystallisation step showed a promising low creep rate of 8.6 × 10?8 s?1. Further improvement of creep resistance is expected for the crystallised samples.  相似文献   

16.
To protect carbon/carbon (C/C) composites against oxidation, a mullite coating was prepared on SiC precoated C/C composites by a hydrothermal electrophoretic deposition process. The phase composition, microstructure and oxidation resistance of the prepared mullite/SiC coatings were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to achieve crack-free mullite coatings. The mullite/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 322 h with a weight loss rate of only 4.89 × 10?4 g/cm2 h. The failure of the multi-layer coatings is considered to be caused by the volatilization of silicate glass layer, the formation of microholes and microcracks on the coating surface and the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 111.11 kJ/mol.  相似文献   

17.
The main purpose of this study consists in investigating the direct microwave sintering of hydroxyapatite (HA) in a single mode cavity. Firstly, stoichiometric HA powders were synthesized by a coprecipitation method from diammonium phosphate and calcium nitrate solutions and shaped by slip-casting. Then, using the one-step microwave process, dense pellets with fine microstructures were successfully obtained in short sintering timespan. A parametric study permitted to determine the influence of powder grain size, sintering temperature and dwell time on the sintered samples microstructures. The Young's modulus (E) and hardness (H) were measured by nanoindentation and the values discussed according to the microstructure. Finally, the resulting mechanical properties determined on the microwave sintered samples (E = 148.5 GPa, H = 9.6 GPa, σcompression = 531.3 MPa and KIC = 1.12 MPa m1/2) are significantly higher than those usually reported in the literature, whatever the sintering process, and could allow the use of HA for structural applications.  相似文献   

18.
Al2O3–Ni nanocomposites were fabricated by spark plasma sintering (SPS) using Ni nanoparticle produced by rotary chemical vapour deposition. Carbon-free Ni nanoparticles were prepared by reacting NiCp2 with O2 to form NiO and then reducing to Ni by H2 for 30 min at 823 K. The highest Ni content and grain size were 7.8 wt.% and 47.7 nm, respectively, using a NiCp2 supply rate (Rs) of 1.67 × 10−6 kg s−1. At a sintering temperature (TSPS) of 1573 K, the hardness of Al2O3–3.8 wt.% Ni was 20.5 GPa, around 1 GPa higher than that of monolithic Al2O3 sintered at the same temperature. The tensile strength of Al2O3–4.6 wt.% Ni was 170 MPa, 60 MPa higher than that of Al2O3 sintered at 1573 K.  相似文献   

19.
TiN–TiB2 composites were fabricated by spark plasma sintering at 1773–2573 K. Effects of TiN and TiB2 content on relative density, microstructure, and mechanical properties were investigated. Above 2373 K, TiN–TiB2 composites exhibited relative densities over 95%. A high density of 99.7% was obtained at 2573 K with 20–30 vol% TiB2. Shrinkage of the TiN–70 vol% TiB2 composite was the highest at 1573–2473 K. For the TiN–70 vol% TiB2 composite prepared at 1973–2373 K, TiN grains were small, while at 2573 K, TiB2 became a continuous matrix, in which irregular-shaped TiN dispersed. hBN was formed in the TiN–TiB2 composite containing 50–60 vol% TiB2 above 2373 K. The maximum Vickers hardness and fracture toughness obtained for the TiN–80 vol% TiB2 composite sintered at 2473 K was 26.3 GPa and 4.5 MPa m1/2, respectively.  相似文献   

20.
This paper reports the fabrication of SiC toughened by in situ synthesized TiB2 based on pressure-less sintering technique using TiO2, B4C, C and SiC as starting materials. The process conditions were investigated in detail, including the pre-sintering temperatures, carbon contents, differently sized TiO2 powders, TiB2 volume contents, final sintering temperature and time. These conditions were found to have great influence on the TiB2 toughened SiC in terms of relative density, TiB2 particle size and fracture toughness. Homogeneous dispersion of in situ synthesized TiB2 secondary phase was confirmed to enhance the KIC of the SiC matrix. The KIC of SiC toughened by in situ synthesized TiB2 (15 vol%) reaches 6.3 MPa m1/2, which is among the highest values reported so far on TiB2 reinforced SiC composites based on the pressure-less sintering technique using TiO2 as Ti source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号