首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Yttria stabilized polycrystalline tetragonal zirconia (Y-TZP)-tungsten carbide (WC) composites were fabricated by hot pressing. Yttria (Y2O3) stabilizer content was kept at 3 mol% to ensure the phase structure of the Y-TZP composites to be tetragonal. To increase the moderate hardness of the 3 mol% Y2O3 added TZP structure, hard WC particles were added with various proportions up to 40 vol%. The TZP/WC composites were sintered at different sintering temperatures between 1450 and 1550 °C.The mechanical and microstructural properties of the resulting composites as well as the phase compositions were investigated. Reciprocating pin-on-disk tests were carried out to determine the wear behavior of the Y-TZP/WC composites. Using bi-modal WC reinforcement, the performance of the composite against wear was improved. Using dry wear sliding conditions under 55 N normal load and 45 km sliding distance, the worn volume of the 75 vol% nanosized - WC distributed 3Y-TZP/40WC composite was about 0.003 mm3.  相似文献   

2.
ZrO2-based ceramics are widely used in biomedical applications due to its color, biocompatibility, and excellent mechanical properties. However, low-temperature degradation (LTD) introduces a potential risk for long-term reliability of these materials. The development of innovative nondestructive techniques, which can explore LTD in zirconia-derived compounds, is strongly required. Yttria stabilized zirconia, 3Y-TZP, is one of the well-developed ZrO2-based ceramics with improved resistance to LTD for dental crown and implant applications. Here, 3Y-TZP ceramic powders were pressed and sintered to study the LTD phenomenon by phase transition behavior. The LTD-driven tetragonal-to-monoclinic phase transition was confirmed by XRD. XPS analysis demonstrated that induced LTD reduced the oxygen vacancies which supports these findings. It is proved that after the degradation, the 3Y-TZP ceramics show the decreased dielectric permittivity at terahertz frequencies due to the crystallographic phase transformation. Terahertz nondestructive probe is a promising method to investigate LTD in zirconia ceramics.  相似文献   

3.
《Ceramics International》2023,49(1):236-242
In this paper, in-situ whiskers reinforced 3 mol% Y2O3 stabilized tetragonal ZrO2 (3Y-TZP) ceramics with different diameters were prepared using pressureless sintering by introducing tourmaline with different particle sizes into 3Y-TZP powders. The purpose of this research was to investigate the influence of in-situ formed whisker diameters on the densification, microstructure and mechanical properties of 3Y-TZP ceramics. The prepared ceramics were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. Findings indicated that in-situ mullite whiskers formed by phase transformation of tourmaline particles can promote the densification of 3Y-TZP ceramics, and further improve the dispersion of mullite whiskers in the 3Y-TZP ceramics. More importantly, the average diameter of mullite whiskers can be controlled by altering the tourmaline particle size. When the average particle size of tourmaline is 500 nm, 3Y-TZP composites have a near-fully dense microstructure of 99.09%, with the ZrO2 grain size of about 335 nm, the average diameter of mullite whiskers is 330 nm. Both the bending strength and fracture toughness reached optimal values of 836 ± 24 MPa and 10.6 ± 0.5 MPa m0.5, respectively. This paper provides a new way to design of the microstructure and strength-toughness of zirconia composite ceramics.  相似文献   

4.
The purpose of this research is focused on the manufacture and characterization of a partially stabilized zirconia ceramic with 3 mol% of Yttria and doped with .5 and 1.5 mol% of Nb2O5 to analyze the influence of doping, with the purpose of improving the properties before hydrothermal degradation. In the first instance, the microwave sintering process was used for the consolidation of this material, then the physical and mechanical properties were characterized. Together, the results obtained by the conventional sintering process were compared. A low hydrothermal degradation study (LTD) is presented at low temperatures in which possible changes in the mechanical properties of the ceramic materials are analyzed and its influence on the phase transformation that zirconia may present is observed. The mechanical properties were evaluated through hardness, fracture toughness, and Young's modulus tests. Likewise, their density was analyzed, and microstructure was characterized by FESEM. It was found that the microwave-sintered samples at 1200°C exhibited superior properties of toughness than even samples sintered by conventional methods at higher temperatures (1400°C). The sample of 3Y-TZP with 1.5 mol% Nb2O5 sintered by microwave with <.2% of porosity achieved a maximum fracture toughness value around 40% higher than the dense monolithic 3Y-TZP material.  相似文献   

5.
The current study reports on the improvement of mechanical properties of 3?mol% Y2O3 stabilized tetragonal ZrO2 (3Y-TZP) by introduction of tourmaline through ball milling and subsequent densification by pressureless sintering at 800, 1200, 1300, 1400?°C. Findings demonstrate that no matter which sintering temperature the 3Y-TZP ceramic containing 2?wt% tourmaline reach a maximum value in flexural strength and fracture toughness as compared to other composite ceramics. As the tourmaline content is 2?wt% and the sintering temperature is 1300?°C, the flexural strength and fracture toughness of the composite ceramics are the highest, increases of 36.2% and 36.6% over plain 3Y-TZP ceramic respectively. The unique microstructure was systematically investigated through X-ray diffraction, scanning electron microscopy, energy dispersive spectrum, and flourier transform-infrared. The strengthening and toughening mechanism of tourmaline in 3Y-TZP ceramic were also discussed.  相似文献   

6.
Y-TZP (YZ) and Al2O3-doped Y-TZP (AYZ) bioceramics with addition of different contents of a refractory bioglass were fabricated. The influence of the glass addition and sintering temperature on the densification behavior, microstructure, and mechanical properties of YZ and AYZ was studied. The developed ceramics contained small amounts of ZrSiO4 and Ca2P2O7 phases within the ZrO2 matrix. The incorporation of glass to YZ promoted the ZrO2 phase partitioning and enhanced the ZrO2 grain growth at all the sintering temperatures, whereas the glass addition in AYZ prevented the Y2O3 redistribution between ZrO2 grains and limited the ZrO2 grain growth at 1300–1400°C. The hardness of the samples with glass was not significantly altered by using either YZ or AYZ. A slight increase in the fracture toughness with increasing glass content was found for YZ, while the fractured toughness of AYZ decreased by the glass addition. The more pronounced ZrO2 phase partitioning of YZ with glass decreased the flexural strength, whereas AYZ maintained almost unaltered its flexural strength at a high level by the glass incorporation.  相似文献   

7.
Zirconia-toughened alumina composites containing 0–30 vol% of 3Y-TZP were fabricated by sintering at 1600 °C for 2 h in air. The effect of the 3Y-TZP content on the mechanical properties and microstructure of the alumina ceramics was investigated. The fracture toughness and biaxial flexural strength increased as the 3Y-TZP content increased. The Young's modulus decreased with 3Y-TZP content according to the rule of mixture, while the hardness showed the contrary tendency. The Weibull modulus of the Al2O3 with 20 vol% 3Y-TZP composite is higher than that of alumina. The residual hoop compressive stress developed in ZTA ceramic composites probably accounts for the enhancement of strength and fracture toughness, as well as for the higher tendency of crack deflection. No monoclinic phase and strength degradation were found after low temperature degradation (LTD) testing. The excellent LTD resistance can be explained by the increased constraining force on zirconia embedded in alumina matrix.  相似文献   

8.
In order to fabricate a heat transfer ceramic-based pipeline for concentrated solar power, rare earth Y2O3 was utilized as a modifying agent to improve the physico-chemistry properties of the cordierite-based composite ceramics. The influences of the sintering temperature and Y2O3 additive on the densification, flexural strength, and thermostability were investigated. The research results indicate that the densification degree of the composite ceramics gradually increases with elevated temperature, and the initial sintering temperature decreases with the addition of Y2O3. In addition, the flexural strength and heat shock resistance of the ceramic materials were improved with the addition of Y2O3. In particular, a sample containing 7 wt% Y2O3 (sample E4) sintered at 1360 °C showed the best properties with a relative density of 92.49%, a flexural strength of 126.81 MPa, and strength loss rate of -7.74% after 30 heat shock cycles. X-ray diffraction and scanning electron microscopy analysis showed that parts of Y3+ ions dissolving into high-temperature liquid phases could reduce liquid viscosity to accelerate grain crystallization and pore elimination. The second phase of yttrium silicate properly impeded the generation of β-spodumene with lower strength during the heat shock process. Overall, a cordierite-based composite ceramic with low porosity was obtained with high mechanical strength and heat shock resistance and can be regarded as a highly potential material for solar heat transfer pipelines.  相似文献   

9.
The sintering behavior of Y2O3 doped with 1 mol% of Ca2+, Mg2+, Mn2+, Ni2+, Sr2+ or Zn2+ was investigated by pressureless sintering in air at a sintering temperature in the range 900–1600 °C. The sintering temperature required for full densification in Y2O3 was reduced by 100–400 °C by the cation doping, while undoped Y2O3 was densified at 1600 °C. The most effective dopant among the examined cations was Zn2+. The grain growth kinetics of undoped and cation-doped Y2O3 was described by the parabolic law. The grain boundary mobility of Y2O3 was accelerated by doping of the divalent cations. High-resolution transmission electron microscopy (HRTEM) observations and nano-probe X-ray energy dispersive spectroscopy (EDS) analyses confirmed that the dopant cations tended to segregate along the grain boundaries without forming amorphous layers. The improved sinterability of Y2O3 is probably related to the accelerated grain boundary diffusion owing to the grain boundary segregation of the dopant cations.  相似文献   

10.
The aim of this study is to characterize the resistance to low temperature degradation (LTD) of the surface of dental-grade zirconia (3Y-TZP) patterned with a Nd:YAG laser (532 nm harmonic and pulse duration of 10 ns) employing an interference setup.Laser patterning decreases the resistance to LTD of 3Y-TZP because of the presence of monoclinic phase and residual stresses, induced by the thermal shock during laser-material interaction. A thermal treatment (1 h at 1200 °C) anneals the affected microstructure and increase the resistance to LTD of laser patterned 3Y-TZP. Transformation delay may be attributed to monoclinic phase reversion, texture in the tetragonal phase and the existence of a net of shallow microcracks on the surface, accommodating autocatalytic transformation.  相似文献   

11.
《Ceramics International》2023,49(8):11865-11874
3Y-TZP ceramics are prepared by solid state method and surface carburization process, and the effect of surface carburization on its the low temperature degradation is studied. The conventional sintered samples completely lost its mechanical properties after aging for 15 h, while the failure time of the surface carburized samples are 300 h. In addition, the nuclear growth rate of the surface carburized samples (αd) and the nucleation rate (Nr) is lower than that of sintered samples, αd plays a dominant role in the degradation process at low temperature and is the key factor determining the aging rate. At the same time, it is found that carbon is dissolved in zirconia lattice in the form of electrically neutral atoms, which will not destroy the original charge balance and produce new oxygen vacancies when entering the interstitial site. More importantly, the precipitation rate of Y3+ from zirconia lattice is the key factor to determine the low-temperature phase transition of tetragonal-monoclinic(T-M). The treatment method of surface carburization has significantly improved the low-temperature degradation performance of 3Y-TZP ceramics, which provides a basis for the application of zirconia ceramics in low-temperature and humid environment.  相似文献   

12.
In this work, the properties of yttria-stabilized zirconia-based ceramics, Y-TZP containing Fe2O3 as coloring agent were evaluated. Nanoparticled powder of 3Y-TZP (ZrO2 - 3 mol.% Y2O3) doped with different amounts of Fe2O3 (0.002–0.136 wt%) were compacted into monolithical or multilayered samples and sintered at 1475 °C - 2 h. The samples were characterized by X-ray diffraction analysis (XRD), relative density, scanning electron microscope (SEM). Hardness and fracture toughness in the color interface were investigated using the Vickers indentation method and the biaxial flexural strength was determined by the piston on 3 balls method (P–3B). Furthermore, optical parameters were measured using spectrophotometry in regard to sample thickness and Fe2O3 content. The results indicated a good adhesion between layers, proven by indentation cracks randomly growing between different regions, because the powders used produced very similar morphological characteristics. The different amounts of Fe2O3 studied in this work did not interfere in densification, phase composition, or microstructure of the sintered ceramics. The fracture toughness and flexural strength did not significantly change due to the addition of Fe2O3, presenting values close to 7 MPa m1/2 and 1120–1150 MPa, respectively, in all studied compositions. On the other hand, increasing Fe2O3 contents lead to an increase in the hardness of the material (1280–1330 H V), and higher contrast ratios (CR) with a consequent loss of translucency. Color variation (ΔE) depended also on the thickness of the material.  相似文献   

13.
The gas permeability of Y0.03Zr0.97O2 (3Y-TZP) porous supports from thermoplastic feedstocks has been improved by adding MgO as a non-pyrolyzable pore former. Common pyrolyzable pore formers such as graphite often produce tortuous and narrow pore channels with low gas permeability, limiting the performance of oxygen transport membranes or other membranes relying on gas transport to the active membrane surface. Thermoplastic feedstocks for extrusion of tubular 3Y-TZP supports were prepared with four different amounts of pyrolyzable pore formers and/or MgO as non-pyrolyzable pore former. The MgO was removed after sintering by leaching in acetic acid. With this technique we obtained porosities above 70 vol% and gas permeabilities above 3?10?14?m2. Compared to samples with only pyrolyzable pore formers, the non-pyrolyzable pore former increases the gas permeability and reduces the tortuosity.  相似文献   

14.
《Ceramics International》2023,49(18):30196-30203
Y2O3 materials have become a popular candidate for preparing refractory crucibles for ultra-pure high-temperature alloy melting in recent years. However, its difficulty in sintering and poor thermal shock resistance limited its industrial application. The effect of CaF2 on the densification microstructure, mechanical properties, and thermal shock resistance of Y2O3 materials was investigated in this paper. The main purpose of this study was to optimize the amount of CaF2 added in the preparation of Y2O3 materials to improve its thermal shock resistance and get better mechanical properties. The mechanism of the densification process of CaF2-doped Y2O3 materials was analyzed by phase analysis and microstructure. The results showed that successive doping of large Ca2+ ions caused more lattice distortion in the Y2O3 materials, and the diffusion rate of Y3+ was increased, thus enhanced grain boundary diffusion and promoted sintering densification in the Y2O3 materials. Meanwhile, the addition of CaF2 also significantly reduced the apparent porosity and enhanced the mechanical properties of the materials. The improvement of these properties was attributed to the increased relative density of CaF2-doped Y2O3 materials and the high sintering activity of CaF2. In addition, crack deflections effectively improved the thermal shock resistance of the materials. The residual flexural strength ratio of Y2O3 materials doped with 1 wt % CaF2 was increased by 21.2% after thermal shock test compared with undoped specimens.  相似文献   

15.
There are only a few reports investigating the effects of high-speed sintering on the properties of dental zirconia. In this study, we investigated the effects of high-speed sintering on the crystal phase, mechanical properties, microstructure, and LTD resistance of 3 mol. % and 4 mol. % Y2O3 stabilized zirconia (3Y and 4Y zirconia). In both 3Y and 4Y zirconia, yttria distribution in the zirconia sintered body was suppressed and the LTD resistance was improved by high-speed sintering. High-speed sintering slightly reduced the mechanical properties of 3Y and 4Y zirconia, but they showed clinically sufficient mechanical properties. From the above results, it was concluded that high-speed sintered 3Y and 4Y zirconia are sufficiently clinically acceptable.  相似文献   

16.
Fine-grained and dense highly transparent Y2O3 ceramics have been successfully prepared using high sintering activity mesoporous Y2O3 powders without any additive by spark plasma sintering (SPS). The influences of the sintering temperature on microstructure, density, optical, and mechanical properties of SPS-sintered Y2O3 ceramics were studied in detail. As results, the optimal Y2O3 ceramics with high relative density of 99.90% and fine average grain size of 140 nm were obtained at a low sintering temperature of 1140°C and a moderate load pressure of 60 MPa for 5 min. Meanwhile, the dense Y2O3 ceramics with 1 mm thickness after annealing show a high linear transmittance of 78% (close to 94% of the theoretical value) at 2.4–3 µm wavelength. In additions, the Vickers hardness and fracture toughness of samples can reach 8.48 GPa and 1.45 MPa m1/2, respectively. This result proves that the high activity of mesoporous Y2O3 is considered to be an important means for preparing high-performance fine Y2O3 ceramics at low sintering temperature.  相似文献   

17.
A fully dense SiC ceramic with a room‐temperature thermal conductivity of 262 W·(m·K)?1 was obtained via spark plasma sintering β‐SiC powder containing 0.79 vol% Y2O3‐Sc2O3. High‐resolution transmission electron microscopy revealed two different SiC‐SiC boundaries, that is, amorphous and clean boundaries, in addition to a fully crystallized junction phase. A high thermal conductivity was attributed to a low lattice oxygen content and the presence of clean SiC‐SiC boundaries.  相似文献   

18.
《Ceramics International》2016,42(10):11554-11561
Post-reaction sintering of a powder compact of Si and sintering aids is a useful technique for fabricating silicon nitride (Si3N4) ceramics at low costs. In order to inhibit the inhomogeneous and uncontrollable exothermic nitridation of Si in the powder compact, Si–Y2O3–Al2O3 nanocomposite particles are designed as an aid for post-reaction sintering. These Si–Y2O3–Al2O3 nanocomposite particles are prepared via mechanical treatment applying high shear stress. Scanning electron microscopy (SEM) observations show that Y2O3 and Al2O3 particles are homogenously dispersed, and fixed to the Si particles. A green compact prepared using the Si–Y2O3–Al2O3 nanocomposite particles results in lower electrical resistivity than that prepared using a powder mixed by wet ball-milling, which suggests that Si particles in the green compact prepared using the nanocomposite particles are isolated by Y2O3 and Al2O3 particles. The isolation of Si particles by the sintering aids successfully prevents the Si particles from melting and agglomerating during the nitridation process, resulting in a higher nitridation ratio and higher α-Si3N4 phase content due to the inhibition of rapid heat transfer caused by the exothermic reaction. The nitridation ratio also increases with the applied power during mechanical treatment. As a result of firing the homogeneously nitrided powder compacts at high temperatures, Si3N4 ceramics with homogeneous microstructure and improved density are successfully fabricated in this manner.  相似文献   

19.
The sintering behavior of Y2O3 doped with 1 mol% of a trivalent or tetravalent cation was investigated by pressureless sintering in air. Ga3+ or Ge4+-doped Y2O3 bodies exhibited higher relative densities than the undoped Y2O3, while the La3+ or Zr4+-doping suppressed the densification of Y2O3. An interdiffusion experiment was performed on the diffusion couples of polycrystalline Er2O3 and Y2O3 doped with Ni2+ or Zr4+, which are some of the most effective and least effective dopants for the improvement of the sinterability, respectively. The lattice and grain boundary diffusion coefficients of the Er3+ cation in Y2O3 were increased by the Ni2+-doping, but were decreased by the Zr4+-doping. High-resolution transmission electron microscopy observations and nano-probe X-ray energy dispersive spectroscopy analyses confirmed that the dopant cations segregate along the grain boundaries without forming an amorphous phase. The doping effect on the sinterability of Y2O3 must result from the change in the diffusivity in Y2O3.  相似文献   

20.
A precursor for Nd3+-doped Y2O3 powder was prepared by a coprecipitation method with (NH4)HCO3 as precipitant. The influence of fixed duration calcination at low temperature on the micromorphology of the powder, and the subsequent effect of sintering conditions on the transmittance of the resulting Nd3+-doped Y2O3 ceramic was systematically studied. The results show that the shape of the Y2O3 particles changes from acicular to flake-like by calcining for 2 h and increasing the calcination temperature, and that a sample sintered at 1983 K for 8 h after being calcined at 973 K for 2 h shows the highest transmittance. This example of transparent Nd3+-doped ceramic is a good candidate for solid-state lasers, IR windows, lamp envelopes, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号