首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
曹鹏飞  罗雄麟 《自动化学报》2014,40(10):2179-2192
Wiener模型结构能有效地表征系统的动态和静态特性, 因此这里首先基于这一结构建立软测量模型, 利用动态与静态子模型分别建立辅助变量与主导变量间的动态与静态关系, 并说明该软测量模型的可行性, 给出模型具体表达式. 其次, 针对所提模型, 提出分步辨识方式获得最优模型参数, 说明其可行性. 再次, 为了减少计算和实现模型在线更新, 这里提出参数辨识递推算法, 并给出软测量模型参数的收敛性结论. 通过实例仿真, 可以看出本文提出模型的可行性, 以及分步辨识方式与递推算法的有效性.  相似文献   

2.
A novel use of neural networks for parameter estimation in nonlinear systems is proposed. The approximating ability of the neural network is used to identify the relation between system variables and parameters of a dynamic system. Two different algorithms, a block estimation method and a recursive estimation method, are proposed. The block estimation method consists of the training of a neural network to approximate the mapping between the system response and the system parameters which in turn is used to identify the parameters of the nonlinear system. In the second method, the neural network is used to determine a recursive algorithm to update the parameter estimate. Both methods are useful for parameter estimation in systems where either the structure of the nonlinearities present are unknown or when the parameters occur nonlinearly. Analytical conditions under which successful estimation can be carried but and several illustrative examples verifying the behavior of the algorithms through simulations are presented.  相似文献   

3.
The stochastic Newton recursive algorithm is studied for system identification. The main advantage of this algorithm is that it has extensive form and may embrace more performance with flexible parameters. The primary problem is that the sample covariance matrix may be singular with numbers of model parameters and (or) no general input signal; such a situation hinders the identification process. Thus, the main contribution is adopting multi-innovation to correct the parameter estimation. This simple approach has been proven to solve the problem effectively and improve the identification accuracy. Combined with multi-innovation theory, two improved stochastic Newton recursive algorithms are then proposed for time-invariant and time-varying systems. The expressions of the parameter estimation error bounds have been derived via convergence analysis. The consistence and bounded convergence conclusions of the corresponding algorithms are drawn in detail, and the effect from innovation length and forgetting factor on the convergence property has been explained. The final illustrative examples demonstrate the effectiveness and the convergence properties of the recursive algorithms.  相似文献   

4.
研究了带未知模型参数和衰减观测率多传感器线性离散随机系统的信息融合估计问题.在模型参数和衰减观测率未知的情形下, 应用递推增广最小二乘(Recursive extend least squares, RELS)算法和加权融合估计算法提出了分布式融合未知模型参数辨识器; 应用相关函数对描述衰减观测现象的随机变量的数学期望和方差进行在线辨识.将辨识后的模型参数、数学期望和方差代入到最优分布式融合状态滤波器中, 获得了相应的自校正融合状态滤波算法.应用动态误差系统分析(Dynamic error system analysis, DESA)方法证明了算法的收敛性.仿真例子验证了算法的有效性.  相似文献   

5.
The off-line estimation of the parameters of continuous-time, linear, time-invariant transfer function models can be achieved straightforwardly using linear prefilters on the measured input and output of the system. The on-line estimation of continuous-time models with time-varying parameters is less straightforward because it requires the updating of the continuous-time prefilter parameters. This paper shows how such on-line estimation is possible by using recursive instrumental variable approaches. The proposed methods are presented in detail and also evaluated on a numerical example using both single experiment and Monte Carlo simulation analysis. In addition, the proposed recursive algorithms are tested using data from two real-life systems.  相似文献   

6.
This paper deals with the issues associated with the development of data-driven models as well as model update strategy for soft sensor applications. A practical yet effective solution is proposed. Key process variables that are difficult to measure are commonly encountered in practice due to limitations of measurement techniques. Even with appropriate instruments, some measurements are only available through off-line laboratory analysis with typical sampling intervals of several hours. Soft sensors are inferential models that can provide continuous on-line prediction of hidden variables; such models are capable of combining real-time measurements with off-line lab data. Due to the prevalence of plant-model mismatch, it is important to update the model using the latest reference data. In this paper, parameters of data-driven models are estimated using particle filters under the framework of expectation–maximization (EM) algorithms. A Bayesian methodology for model calibration strategy is formulated. The proposed framework for soft sensor development is applied to an industrial process to provide on-line prediction of a quality variable.  相似文献   

7.
This paper presents a non-linear moving average model with exogenous inputs (NMAX) and a non-linear auto-regressive moving average model with exogenous inputs (NARMAX) respectively to model static and dynamic hysteresis inherent in piezoelectric actuators. The modeling approach is based on the expanded input space that transforms the multi-valued mapping of hysteresis into a one-to-one mapping. In the expanded input space, a simple hysteretic operator is proposed to be used as one of the coordinates to specify the moving feature of hysteresis. Both the modified Akaike's information criterion (MAIC) and the recursive least squares (RLS) algorithm are employed to estimate the appropriate orders and coefficients of the models. The advantage of the proposed approach is in the systematic design procedure which can on-line update the model parameters so as to accommodate to the change of operation environment compared with the classical Preisach model. Moreover, the obtained model is non-linear in variables but linear in parameters so that it can avoid the problem of sticking in local minima which the neural network based models usually have. The results of the experiments have shown that the proposed models can accurately describe static and dynamic behavior of hysteresis in piezoelectric actuators.  相似文献   

8.
针对青霉素发酵过程中菌体浓度、基质浓度、产物浓度等关键参量难以直接测量的难题,将逆系统方法与动态递归模糊神经网络(DRFNN)相结合,提出一种基于动态递归模糊神经逆的青霉素发酵软测量方法.在证明了系统可逆的条件下,得到系统的逆模型;再应用DRFNN网络所具有的自学习,自适应能力以及对任意非线性的逼近能力,对该模型进行了...  相似文献   

9.
利用混凝土泵车臂架应变信号计算其疲劳累积损伤的健康监测方案,由于应变片的使用寿命较短且不可靠,通过应变片直接测量泵车臂架应变信号不能适用于泵车臂架结构长期健康监测。采用软测量技术,基于最小二乘支持向量机(LS-SVM)建立软测量模型来间接获得泵车臂架应变信号。分析泵车臂架应变信号的特点,进而选择辅助变量。为了提高模型精度,对应变信号进行解耦,分别建立静态应变和动态应变的软测量模型进而得出总应变,利用遗传算法对模型参数进行了优化,与总体建模结果进行了比较。仿真分析结果表明,软测量技术为泵车臂架结构健康监测的工程实现提供了一种可行的方法,并且分别建立静态应变和动态应变的软测量模型比总体建模精度更高。  相似文献   

10.
The extended Kalman filter (EKF) is a well-known tool for the recursive parameter estimation of static and dynamic nonlinear models. In particular, the EKF has been applied to the estimation of the weights of feedforward and recurrent neural network models, i.e. to their training, and shown to be more efficient than recursive and nonrecursive first-order training algorithms; nevertheless, these first applications to the training of neural networks did not fully exploit the potentials of the EKF. In this paper, we analyze the specific influence of the EKF parameters for modeling problems, and propose a variant of this algorithm for the training of feedforward neural models which proves to be very efficient as compared to nonrecursive second-order algorithms. We test the proposed EKF algorithm on several static and dynamic modeling problems, some of them being benchmark problems, and which bring out the properties of the proposed algorithm.  相似文献   

11.
In this paper, a recursive subspace identification method is proposed to identify linear time-invariant systems subject to load disturbance with relatively slow dynamics. Using the linear superposition principle, the load disturbance response is decomposed from the deterministic-stochastic system response in the form of a time-varying parameter. To ensure unbiased estimation of the deterministic system matrices, a recursive least-squares (RLS) identification algorithm is established with a fixed forgetting factor, while another RLS algorithm with an adaptive forgetting factor is constructed based on the output prediction error to quickly track the time-varying parameter of load disturbance response. By introducing a deadbeat observer to represent the deterministic system response, two extended observer Markov parameter matrices are constructed for recursive estimation. Consequently, the deterministic matrices are retrieved from the identified system Markov parameter matrices. The convergence of the proposed method is analysed with a proof. Two illustrative examples are shown to demonstrate the effectiveness and merit of the proposed identification method.  相似文献   

12.
Sei  Makoto  Utsumi  Akira  Yamazoe  Hirotake  Lee  Joo-Ho 《Applied Intelligence》2022,52(10):11506-11516

In this paper, a deep learning method is proposed for human image processing that incorporates a mechanism to update target-specific parameters. The aim is to improve system performance in situations where the target can be continuously observed. Network-based algorithms typically rely on offline training processes that use large datasets, while trained networks typically operate in a one-shot fashion. That is, each input image is processed one by one in the static network. On the other hand, many practical applications can be expected to use continuous observation rather than observation of a single image. The proposed method employs dynamic use of multiple observations to improve system performance. In this paper, the effectiveness of the proposed method adopting an iterative update process is clarified through its implementation in the task of face-pose estimation. The method consists of two separate processes: 1) sequential estimation and updating of face-shape parameters (target-specific parameters) and 2) face-pose estimation for every single image using the updated parameters. Experimental results indicate the effectiveness of the proposed method.

  相似文献   

13.
This paper is aimed at identifying a linear time-invariant dynamical model (LTI model with lumped parameters) of an activated sludge process. Such a system is characterized by stiff dynamics, nonlinearities, time-variant parameters, recycles, multivariability with many cross-couplings and wide variations in the inflow and the composition of the incoming wastewater. In this simulation study, a discrete-time identification approach based on subspace methods is applied in order to estimate a nominal MIMO state-space model around a given operating point, by probing the system in open-loop with multi-level random signals. Six subspace algorithms are used and their performances are compared based on adequate quality criteria, taking into account identification/validation data. As a result, the selected model is a very low-order one and it describes the complex dynamics of the process well. Important issues concerning the generation of the data set and the estimation of the model order are discussed.  相似文献   

14.
In this paper, we propose an adaptive control scheme that can be applied to nonlinear systems with unknown parameters. The considered class of nonlinear systems is described by the block-oriented models, specifically, the Wiener models. These models consist of dynamic linear blocks in series with static nonlinear blocks. The proposed adaptive control method is based on the inverse of the nonlinear function block and on the discrete-time sliding-mode controller. The parameters adaptation are performed using a new recursive parametric estimation algorithm. This algorithm is developed using the adjustable model method and the least squares technique. A recursive least squares (RLS) algorithm is used to estimate the inverse nonlinear function. A time-varying gain is proposed, in the discrete-time sliding mode controller, to reduce the chattering problem. The stability of the closed-loop nonlinear system, with the proposed adaptive control scheme, has been proved. An application to a pH neutralisation process has been carried out and the simulation results clearly show the effectiveness of the proposed adaptive control scheme.  相似文献   

15.
In this paper, recursive algorithms of subspace state-space system identification (4SID) for multiple-input, multiple-output (MIMO), finite dimensional, linear time-invariant (FDLTI) systems are proposed. These algorithms are derived based on the Matrix Inversion Lemma. The investigation of our algorithms clarifies that a series of 4SID is the extension of the classical least square method to identification for multivariable systems, and also that our algorithms are the direct extension of the recursive least square algorithm to such ones. For PO-MOESP (the ordinary MOESP scheme with instrumental variables constructed from Past input and Output measurements), we show the mechanism of how the effect of the process and measurement noises is eliminated asymptotically by a projection related to the input and regressor matrices. “MOESP” is an abbreviation for “the MIMO output-error state-space model identification.”  相似文献   

16.
A discrete recursive time-domain identification algorithm based on gradient estimation approach is proposed for linear time-invariant lumped-parameter systems. The scheme is quite general. Without invoking the strictly positive real lemma, Landau's proportional plus integral algorithms are shown to be the special cases of the proposed algorithm. Other gradient estimation based algorithms are also shown to be the special cases. The convergence of the scheme is proved using the second method of Lyapunov.  相似文献   

17.
The Hammerstein–Wiener model is a block-oriented model, having a linear dynamic block sandwiched by two static nonlinear blocks. This note develops an adaptive controller for a special form of Hammerstein–Wiener nonlinear systems which are parameterized by the key-term separation principle. The adaptive control law and recursive parameter estimation are updated by the use of internal variable estimations. By modeling the errors due to the estimation of internal variables, we establish convergence and stability properties. Theoretical results show that parameter estimation convergence and closed-loop system stability can be guaranteed under sufficient condition. From a qualitative analysis of the sufficient condition, we introduce an adaptive weighted factor to improve the performance of the adaptive controller. Numerical examples are given to confirm the results in this paper.  相似文献   

18.
This paper uses an estimated noise transfer function to filter the input–output data and presents filtering based recursive least squares algorithms (F-RLS) for controlled autoregressive autoregressive moving average (CARARMA) systems. Through the data filtering, we obtain two identification models, one including the parameters of the system model, and the other including the parameters of the noise model. Thus, the recursive least squares method can be used to estimate the parameters of these two identification models, respectively, by replacing the unmeasurable variables in the information vectors with their estimates. The proposed F-RLS algorithm has a high computational efficiency because the dimensions of its covariance matrices become small and can generate more accurate parameter estimation compared with other existing algorithms.  相似文献   

19.
This paper focuses on the parameter estimation problems of output error autoregressive systems and output error autoregressive moving average systems (i.e., the Box–Jenkins systems). Two recursive least squares parameter estimation algorithms are proposed by using the data filtering technique and the auxiliary model identification idea. The key is to use a linear filter to filter the input–output data. The proposed algorithms can identify the parameters of the system models and the noise models interactively and can generate more accurate parameter estimates than the auxiliary model based recursive least squares algorithms. Two examples are given to test the proposed algorithms.  相似文献   

20.
This paper finds the appropriate pi-coefficients for a parameter estimation adaptive system and uses them to analyze the stability of two estimation algorithms. The estimation error dynamics of the system are modeled by a linear time-invariant subsystem and a nonlinear time-varying update law in a feedback loop. Then the so-called max-p problems are formulated and solved to obtain the pi-coefficients for the linear subsystem and nonlinear update low. For the investigated system, the quantitative results show that the least-squares update algorithm has larger stability range than that of the gradient algorithm, and the σ-modification scheme gives larger stability ranges for both algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号