首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of high-frequency cross-flow back-pulsing on microsieves permeation performance during the microfiltration of whole milk is described in this work. Silicon nitride microsieves (0.8 μm rectangular) combined with a dynamic permeate cross-flow back-pulsing technique to control fouling were used. Results showed that the transmembrane pressure (TMPpos) and the back-pulsing frequency were the process variables that most influenced microsieves performance. Permeation rates in the range of 5000 up to 27,000 L h?1 m?2 which are one order of magnitude higher than those reported for skim milk microfiltration were obtained depending on the process conditions selected. It was concluded that higher permeation rates are obtained when the back-pulse pressure, i.e., the negative TMP is set equal to the positive TMP, both at 150 mBar and the back-pulsing frequency at 15 Hz.  相似文献   

2.
《Ceramics International》2016,42(9):10793-10800
Plasma nitriding and plasma-assisted PVD duplex treatment was adopted to improve the load-bearing capacity, fatigue resistance and adhesion of the AlTiN coating. Ion etch-cleaning was applied for better adhesion before plasma nitriding. After plasma nitriding Ti interlayer was in-situ deposited by high power impulse magnetron sputtering (HIPIMS), followed by the AlTiN coating through in-situ deposition by advanced plasma-assisted arc (APA-Arc). The microstructure and properties of the duplex-treated coating were carefully characterized and analyzed. The results show that the thicknesses of the nitriding zone, the γ′-Fe4N compound layer, the Ti interlayer and the AlTiN top layer with nanocrystalline microstructures are about 60 μm, 2–3 μm, 100 nm and 6.1 μm, respectively. The nitriding rate is about 30 μm/h and the AlTiN coating deposition rate reaches 6.1 μm/h. The interfacial adhesion of the Ti/AlTiN coating is well enhanced by ion etch-cleaning and a Ti interlayer, and the load-bearing capacity is also improved by duplex treatment. In addition, the instinct hardness of the Ti/AlTiN coating reaches 3368HV0.05 while the wear rate coefficient of 5.394×10−8 mm−3/Nm is sufficiently low. The Ti/AlTiN coating, which possesses a high corrosion potential (Ecorr=−104.6 mV) and a low corrosion current density (icorr=4.769 μA/cm2), shows highly protective efficiency to the substrate.  相似文献   

3.
In this work, tetrahedral diamond-like carbon (DLC) films are deposited on Si, Ti/Si and Au/Si substrates by a new plasma deposition technique — filtered arc deposition (FAD). Their electron field emission characteristics and fluorescent displays of the films are tested using a diode structure. It is shown that the substrate can markedly influence the emission behavior of DLC films. An emission current of 0.1 μA is detected at electric field EDLC/Si=5.6 V/μm, EDLC/Au/Si=14.3 V/μm, and EDLC/Ti/Si=5.2 V/μm, respectively. At 14.3 V/μm, an emission current density JDLC/Si=15.2 μA/cm2, JDLC/Au/Si=0.4 μA/cm2, and JDLC/Ti/Si=175 μA/cm2 is achieved, respectively. It is believed that a thin TiC transition layer exists in the interface between the DLC film and Ti/Si substrate.  相似文献   

4.
The detailed three-dimensional accumulation of deposits and the build-up of pressure-drop during filtration of compressible gases laden with nanoparticles (diameter dp=50 nm) through capillaries (1–4 μm radius) was investigated by Langevin dynamics (LD) at Peclet number, Pe, 0.01–10. At low Pe, highly porous (98%) deposits were formed while at higher Pe the porosity was slightly reduced including a void cone upstream of the capillary inlet. Three distinct deposition regimes were identified: capillary deposition, clogging and cake growth. At the time of clogging (tcl), a filter cake with constant solid volume fraction began to form, accompanied with build-up of pressure-drop which was in excellent agreement with classic cake filtration theory. An expression for the solid volume fraction of the cake (φsd,c) was obtained as a sole function of Pe. In addition, the filtration efficiency became 1 after clogging, since the cake acts as a perfectly efficient filter. Penetration of nanoparticles takes place until the onset of cake filtration at high Pe (1–10) while for smaller ones (0.01–0.1) it is negligible at the employed capillary radii and length (10 μm). Analytical expressions for the time of capillary clogging and height of the void cone were derived and were in agreement to LD simulations. The height of the void cone is in the order of one capillary diameter at high Pe.  相似文献   

5.
The electron field emission (EFE) properties of Si nanostructures (SiNS), such as Si nanorods (SiNR) and Si nanowire (SiNW) bundles were investigated. Additionally, ultrananocrystalline diamond (UNCD) growth on SiNS was carried out to improve the EFE properties of SiNS via forming a combined UNCD/SiNS structure. The EFE properties of SiNS were improved after the deposition of UNCD at specific growth conditions. The EFE performance of SiNR (turn-on field, E0 = 5.3 V/μm and current density, Je = 0.53 mA/cm2 at an applied field of 15 V/μm) was better than SiNW bundles (turn-on field, E0 = 10.9 V/μm and current density, Je < 0.01 mA/cm2 at an applied field of 15 V/μm). The improved EFE properties with turn-on field, E0 = 4.7 V/μm, current density, Je = 1.1 mA/cm2 at an applied field of 15 V/μm was achieved for UNCD coated (UNCD grown for 60 min at 1200 W) SiNR. The EFE property of SiNW bundles was improved to a turn-on field, E0 = 8.0 V/μm, and current density, Je = 0.12 mA/cm2 at an applied field of 15 V/μm (UNCD grown for 30 min at 1200 W).  相似文献   

6.
A laser controlled fracture peeling technique is demonstrated to smooth the Al2O3 ceramic surface without thermal damages. It was found that a chip can be separated and curled from the ceramic surface during a focused CO2 continuous wave (CW) laser dual-scanning. The thickness of the curled chip is ~50 μm and the formed subsurface roughness (Ra  2 μm) is close to the surface machined by mechanical breaking (Ra = 1.84 μm). The chip formation is attributed to the controlled fracture by the residual tensile stress in the recast layer, whereas the chip curling only occurs when the melting depth is shallower than the position of lateral cracks. The peeling technique can be applied to polish the cut surface of laser fusion cutting in ceramics. The polished cut surface (Ra = 2.18 μm) is free from recast, crack and heat effects. The microstructure is similar to the base material. The material removal rate during polishing is up to 0.125 mm3/s.  相似文献   

7.
《Ceramics International》2016,42(3):4377-4385
High quality micro-sized steps and blind hole structures without microcracks, chips or spatter deposition were machined on yttria-tetragonal zirconia polycrystal (Y-TZP, 3 mol% yttria) by nanosecond laser (wavelength=532 nm, pulse width ~6 ns). The diameter of blind hole is 500 μm and each step is 500±10 μm wide and 100±5 μm deep. The 1.35 mm3/min removal rate and the smooth machined surface with Ra=2.824 μm roughness depicting the high precise and efficient processing were achieved. The ablation characteristics of nanosecond laser process of Y-TZP ceramic were also studied. Based on the study, a reasonable design of the processing path for micromachining of a finer embedded step with 24±2 μm width (smaller than the 60 μm focused spot size) around the inner-wall of a 2×2 mm2 cavity was developed. These results and discussion offer new possibilities in the manufacturing of bio-ceramic products by nanosecond laser with high processing quality and efficient.  相似文献   

8.
We present a comprehensive study of the parameter space for single layer graphene growth by chemical vapor deposition on Cu. The temperature is the most widely recognized control parameter in single layer graphene growth. We show that the methane-to-hydrogen ratio and the growth pressure also are critical parameters that affect the structural perfection and the cleanliness of graphene. The optimal conditions for suppressing double and multilayer graphene growth occur near 1000 °C, 1:20 methane-to-hydrogen ratio, and a total pressure in the range from 0.5 to 1 Torr. Raman mapping of a 40 × 30 μm2 area shows single layer domains with 5–10 μm linear dimensions. Atomic resolution imaging of suspended graphene by aberration corrected scanning transmission electron microscopy shows that the single layer graphene consists of areas of 10–15 nm linear dimensions and smaller patches of residual contamination that was undetected by other characterization methods.  相似文献   

9.
A 3D coordination polymer, {[Cd154-Mtta)123-Mtta)63-SO4)43-OH)4] · 6H2O}n (1) (Mtta = 5-methyl-tetrazolate), which shows the rare multifunction of in situ formed Mtta and bright photo-induced blue emission, was isolated from a hydrothermal reaction of CdSO4 · 8/3H2O, NaN3 in acetonitrile and water.  相似文献   

10.
The autonomous crack-healing capability of Cr2AlC MAX phase ceramic by surface oxidation at elevated temperatures has a huge potential for high temperature structural and protective coating applications. In this work we use time-lapse X-ray computed tomography (CT) to track the fine details of local crack filling phenomena in 3 dimensions (3D) with time. The maximum crack width that could be fully healed upon exposure to 1200 °C in air is 4.8 μm in 4 h and 10 μm after 12 h. Furthermore, during healing Cr7C3 phase is observed beneath the dense Al2O3 layer (average thickness of 1 μm on each crack surface) when the crack width exceeds 2 μm. The 3D image sequences indicated that the rate of healing is essentially independent of position along, or across, the crack faces. The crack healing kinetics of Cr2AlC at 1200 °C broadly follows a parabolic rate law with a rate constant of 4.6 × 10−4 μm2 s−1. The microstructure, composition and thickness of the oxide scale in the healed crack area are characterized via post mortem SEM-EDS measurements and confirm the formation of an initial dense alumina layer on top of which a more porous layer forms. Impurity Cr particles appear to accelerate the oxidation process locally and correlative SEM imaging of the same region suggests this is by providing Cr2O3 nucleation sites.  相似文献   

11.
Woodcutting tools with hardmetal (WC–Co) tool tips were coated with a high-quality (80% sp3 bonding fraction) tetrahedral amorphous carbon (ta-C) film. The coatings were produced by filtered cathodic vacuum-arc (FCVA) deposition. The problem with poor adhesion between the ta-C film and cobalt was solved by using an intermediate chromium layer structure. The adhesion was tested with a conventional scratch tester. In the case of a 1.2 μm thick ta-C film with intermediate layer structure the critical load value was 31.6 N; without the intermediate layer it was 16.2 N. The lifetime of the ta-C-coated woodcutting tool was tested under normal production conditions with a computer numerical control (CNC) woodcutting machine. The lifetime of the woodcutting tool tip improved by a factor of three in the case of a 2.1 μm thick multilayer (ta-C/Cr) film coating and by a factor of 1.5 in the case of a 1.0 μm thick ta-C film coating with an 0.5 μm thick intermediate chromium layer.  相似文献   

12.
The effects of alkali and nitric acid surface treatment and acid etching on the CaP deposition of an open cell Ti6Al4V foam (60% porous and 300–500 μm in pore size) developed for biomedical applications were investigated in a simulated body fluid (SBF) solution for 14-day. The surface roughness of the foam specimens ground flat surfaces was measured in nano-metric scale before and after SBF immersion using an atomic force microscope (AFM). A significant increase in the surface roughness of alkali treated foam specimen after SBF immersion indicated a smaller crystal size CaP deposition, which was also confirmed by the AFM micrographs. The microscopic evaluation clearly showed that alkali treatment and nitric acid treatment induced a continuous, uniform CaP deposition on the cell wall surfaces of the foam (interior of cells). While in untreated foam specimen the cells are filled with CaP precipitates and acid etching did not produce a continuous coating layer on particles interior of the cells. The coating layer thickness was ~3 μm in alkali treated foam specimens after 14-day of SBF immersion, while nitric acid treatment induced relatively thinner coating layer, 0.6 μm.  相似文献   

13.
To fast remove the surface damage layer from single-crystal-diamond, we have developed a chemical etching process using molten KCl and KOH solution at high temperature around 1100 °C. High removal rate about R{001} = 2.0 μm/h, R{101} = 20 μm/h and R{111} = 26 μm/h was achieved for the {001} sample surfaces, {101} and {111} sample edges, respectively. Laser microscope observation has confirmed that the {001} surface flatness has been greatly improved after etching and surface roughness formed during previous lift-off process has been effectively removed.  相似文献   

14.
The reaction of a pyridinium-containing ligand precursor with manganese(II) chloride and sodium azide yielded a Mn(II) coordination polymer, [MnLN3]n·1.5nH2O, where L is 1-(tetrazolato-5-methyl)pyridinium-4-carboxylate, a bifunctional zwitterionic ligand generated in situ from a non-coordinative precursor via two organic reactions (cyano-to-azide cycloaddition and ester hydrolysis). In the compound, metal ions are connected into uniform chains by the triple bridges consisting of μ-1,1-azide, μ-2,3-tetrazolate and μ-1,3-carboxylate, and the formally anionic chains are charge compensated and interlinked into 2D layers by the cationic 1-methylenepyridinium backbone of the L ligand. The compound displays typical 1D antiferromagnetism with J =  2.37 cm 1 through the triple bridges. Magneto-structural analysis indicates the antiferromagnetic interaction increases as the Mn–N–Mn angle of the azide bridge decreases.  相似文献   

15.
The electron field emission (EFE) properties of Si-nanowires (SiNW) were improved by coating a UNCD films on the SiNWs. The SiNWs were synthesized by an electroless metal deposition (EMD) process, whereas the UNCD films were deposited directly on bare SiNW templates using Ar-plasma based microwave plasma enhanced chemical vapor deposition (MPE–CVD) process. The electron field emission properties of thus made nano-emitters increase with MPE–CVD time interval for coating the UNCD films, attaining small turn-on field (E0 = 6.4 V/μm) and large emission current density (Je = 6.0 mA/cm2 at 12.6 V/μm). This is presumably owing to the higher UNCD granulation density and better UNCD-to-Si electrical contact on SiNWs. The electron field emission behavior of these UNCD nanowires emitters is significantly better than the bare SiNW ((E0)SiNWs = 8.6 V/μm and (Je)SiNWs < 0.01 mA/cm2 at the same applied field) and is comparable to those for carbon nanotubes.  相似文献   

16.
Electrophoretic deposition (EPD) is a simple, rapid, and low cost method for forming dense lead zirconate titanate (PZT) films down to 5 μm from particulate precursors. The three main steps of this process are: (1) formation of a charged suspension of the starting PZT powder; (2) deposition of the powder particles on an electrode under the influence of a dc electric field; and (3) fluxing and constrained sintering of the resulting particulate deposit at 900°C to form a dense continuous film. A 10 μm film formed using this process exhibited a polarization hysteresis equivalent to that of a bulk sample formed from the same starting powder, with a remnant polarization of 33 μC cm−2.  相似文献   

17.
Enhanced condensational growth (ECG) is a newly proposed concept for respiratory drug delivery in which a submicrometer aerosol is inhaled in combination with saturated or supersaturated water vapor. The initially small aerosol size provides for very low extrathoracic deposition, whereas condensation onto droplets in vivo results in size increase and improved lung retention. The objective of this study was to develop and evaluate a CFD model of ECG in a simple tubular geometry with direct comparisons to in vitro results. The length (29 cm) and diameter (2 cm) of the tubular geometry were representative of respiratory airways of an adult from the mouth to the first tracheobronchial bifurcation. At the model inlet, separate streams of humidified air (25, 30, and 39 °C) and submicrometer aerosol droplets with mass median aerodynamic diameters (MMADs) of 150, 560, and 900 nm were combined. The effects of condensation and droplet growth on water vapor concentrations and temperatures in the continuous phase (i.e., two-way coupling) were also considered. For an inlet saturated air temperature of 39 °C, the two-way coupled numerical (and in vitro) final aerosol MMADs for initial sizes of 150, 560, and 900 nm were 1.75 μm (vs. 1.23 μm), 2.58 μm (vs. 2.66 μm), and 2.65 μm (vs. 2.63 μm), respectively. By including the effects of two-way coupling in the model, agreements with the in vitro results were significantly improved compared with a one-way coupled assumption. Results indicated that both mass and thermal two-way coupling effects were important in the ECG process. Considering the initial aerosol sizes of 560 and 900 nm, the final sizes were most influenced by inlet saturated air temperature and aerosol number concentration and were not largely influenced by initial size. Considering the growth of submicrometer aerosols to above 2 μm at realistic number concentrations, ECG may be an effective respiratory drug delivery approach for minimizing mouth–throat deposition and maximizing aerosol retention in a safe and simple manner. However, future studies are needed to explore effects of in vivo boundary conditions, more realistic respiratory geometries, and transient breathing.  相似文献   

18.
A 3D pillared-layer porous framework, {[Co2(H2O)(μ3-OH)(ptz)(nip)]·2H2O}n (1) (ptz = 5-(4-pyridyl)tetrazolate, nip = 5-nitroisophthalate), was in situ hydrothermally synthesized and structurally and magnetically characterized. Interestingly, the layered substructure of 1 consists of scarcely observed corner-sharing Co2(μ3-OH) ?-chain and unprecedented pentadentate ptz ligand. More importantly, due to the mixed triple syn,syn-carboxylate-μ3-OH-μ4-tetrazolyl bridges as well as the triangular CoII arrangement, 1 behaves as a typical antiferromagnetically coupled paramagnet with a slight spin frustration, which exhibits a low-dimensional antiferromagnetic ordering below 10 K (Neel Temperature).  相似文献   

19.
《Ceramics International》2015,41(6):7651-7660
We describe the manufacture and electrochemical characterization of micro-tubular anode supported solid oxide fuel cells (mT-SOFC) operating at intermediate temperatures (IT) using porous gadolinium-doped ceria (GDC: Ce0.9Gd0.1O2−δ) barrier layers. Rheological studies were performed to determine the deposition conditions by dip coating of the GDC and cathode layers. Two cell configurations (anode/electrolyte/barrier layer/cathode): single-layer cathode (Ni–YSZ/YSZ/GDC/LSCF) and double-layer cathode (Ni–YSZ/YSZ/GDC/LSCF–GDC/LSCF) were fabricated (YSZ: Zr0.92Y0.16O2.08; LSCF: La0.6Sr0.4Co0.2Fe0.8O3−δ). Effect of sintering conditions and microstructure features for the GDC layer and cathode layer in cell performance was studied. Current density–voltage (j–V) curves and impedance spectroscopy measurements were performed between 650–800 °C, using wet H2 as fuel and air as oxidant. The double-cathode cells using a GDC layer sintered at 1400 °C with porosity about 50% and pores and grain sizes about 1 μm, showed the best electrochemical response, achieving maximum power densities of up to 160 mW cm−2 at 650 °C and about 700 mW cm−2 at 800 °C. In this case GDC electrical bridges between cathode and electrolyte are preserved free of insulating phases. A preliminary test under operation at 800 °C shows no degradation at least during the first 100 h. These results demonstrated that these cells could compete with standard IT-SOFC, and the presented fabrication method is applicable for industrial-scale.  相似文献   

20.
The particle sizes of the pharmaceutical substances are important for their bioavailability. The bioavailability can be improved by reducing the particle size of the drug. In this study, salicylic acid and taxol were micronized by the rapid expansion of supercritical fluids (RESS). Supercritical CO2 and CO2 + ethanol mixture were used as solvent. Experiments were carried out to investigate the effect of extraction temperature (318–333 K) and pressure (15–25 MPa), pre-expansion temperature (353–413 K), expansion chamber temperature (273–293 K), spray distance (6–13 cm), co-solvent concentration (ethanol, 1, 2, 3, v/v, %) and nozzle configuration (capillary and orifice nozzle) on the size and morphology of the precipitated salicylic acid particles. For taxol, the effects of extraction pressure (25, 30, 35 MPa) and co-solvent concentration (ethanol, 2, 5, 7, v/v, %) were investigated. The characterization of the particles was determined by scanning electron microscopy (SEM), optical microscopy, and LC–MS analysis.The particle size of the original salicylic acid particles was L/D: 171/29–34/14 μm/μm. Depending upon the different experimental conditions, smaller particles (L/D: 15.73/4.06 μm/μm) were obtained. The particle size of taxol like white crystal powders was reduced from 0.6–17 μm to 0.3–1.7 μm The results showed that the size of the precipitated salicylic acid and taxol particles were smaller than that of original particles and RESS parameters affect the particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号