首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(7):8559-8564
In this work NiO/3 mol% Y2O3–ZrO2 (3YSZ) and NiO/8 mol% Y2O3–ZrO2 (8YSZ) hollow fibers were prepared by phase-inversion. The effect of different kinds of YSZ (3YSZ and 8YSZ) on the porosity, electrical conductivity, shrinkage and flexural strength of the hollow fibers were systematically evaluated. When compared with Ni–8YSZ the porosity and shrinkage of Ni–3YSZ hollow fibers increases while the electrical conductivity decreases, while at the same time also exhibiting enhanced flexural strength. Single cells with Ni–3YSZ and Ni–8YSZ hollow fibers as the supported anode were successfully fabricated showing maximum power densities of 0.53 and 0.67 W cm−2 at 800 °C, respectively. Furthermore, in order to improve the cell performance, a Ni–8YSZ anode functional layer was added between the electrolyte and Ni–YSZ hollow fiber. Here enhanced peak power densities of 0.79 and 0.73 W cm−2 were achieved at 800 °C for single cells with Ni–3YSZ and Ni–8YSZ hollow fibers, respectively.  相似文献   

2.
Porous yttria-stabilized zirconia (YSZ) ceramics were successfully fabricated by the dry pressing method with different size (1.8–20 μm) and amount (2–60 vol.%) of mono-dispersed poly methyl methacrylate (PMMA) micro-balls. Different PMMA additions with different size and amount were investigated to achieve optimal thermal and mechanical properties. With increases of the amount of PMMA, the porosity of porous YSZ ceramics ranges from 7.29% to 51.6%, the flexural strength increases firstly and then decreases, and the thermal conductivity decreases continuously. With decreases of the diameter of PMMA micro-balls, the mean pore size and thermal conductivity of porous YSZ ceramics decrease, and the flexural strength of porous YSZ ceramics with same porosity increases firstly and then decreases. The porous YSZ ceramics with a higher porosity (18.44 ± 1.24%), the highest flexural strength (106.88 ± 3.2179 MPa) and low thermal conductivity (1.105 ± 0.15 W/m K) can be obtained when the particle diameter and the amount of PMMA are 5 μm and 20 vol.%, respectively.  相似文献   

3.
Sm0.2Ce0.8O1.9 (SDC)–embedded Sm0.5Sr0.5CoO3?δ (SSC) composite fibers were successfully fabricated by electrospinning using commercial SDC nanopowders and an SSC precursor gel containing polyvinyl alcohol (PVA) and hydrated metal nitrate. After calcination of the composite fibers at 800 °C, the fibers of 300 ± 80 nm in diameter with a well-developed SSC cubic-perovskite structure and fluorite SDC were successfully obtained. An anode-supported single cell composed of NiO–Gd0.2Ce0.8O1.9 (GDC)/GDC/SSC–SDC fibers was fabricated, and its electrochemical performance was evaluated. The maximum power densities were 1250 and 360 mW/cm2 at 700 and 550 °C, respectively, which we ascribe to the excellent properties of the SSC fibers with embedded SDC particles such as a highly porous and continuous structure promoting mass transport and a charge transfer reaction.  相似文献   

4.
《Ceramics International》2015,41(6):7651-7660
We describe the manufacture and electrochemical characterization of micro-tubular anode supported solid oxide fuel cells (mT-SOFC) operating at intermediate temperatures (IT) using porous gadolinium-doped ceria (GDC: Ce0.9Gd0.1O2−δ) barrier layers. Rheological studies were performed to determine the deposition conditions by dip coating of the GDC and cathode layers. Two cell configurations (anode/electrolyte/barrier layer/cathode): single-layer cathode (Ni–YSZ/YSZ/GDC/LSCF) and double-layer cathode (Ni–YSZ/YSZ/GDC/LSCF–GDC/LSCF) were fabricated (YSZ: Zr0.92Y0.16O2.08; LSCF: La0.6Sr0.4Co0.2Fe0.8O3−δ). Effect of sintering conditions and microstructure features for the GDC layer and cathode layer in cell performance was studied. Current density–voltage (j–V) curves and impedance spectroscopy measurements were performed between 650–800 °C, using wet H2 as fuel and air as oxidant. The double-cathode cells using a GDC layer sintered at 1400 °C with porosity about 50% and pores and grain sizes about 1 μm, showed the best electrochemical response, achieving maximum power densities of up to 160 mW cm−2 at 650 °C and about 700 mW cm−2 at 800 °C. In this case GDC electrical bridges between cathode and electrolyte are preserved free of insulating phases. A preliminary test under operation at 800 °C shows no degradation at least during the first 100 h. These results demonstrated that these cells could compete with standard IT-SOFC, and the presented fabrication method is applicable for industrial-scale.  相似文献   

5.
A novel processing route for producing microcellular SiC ceramics with a duplex pore structure has been developed using a polysiloxane, carbon black, SiC, Al2O3, Y2O3, and two kinds of pore former (expandable microspheres and PMMA spheres). The duplex pore structure consists of large pores derived from the expandable microspheres and small windows in the strut area that were replicated from the PMMA spheres. The presence of these small windows in the strut area improved the permeability of the porous ceramics. The gas permeability coefficients of porous SiC ceramics were 0.13 × 1012 m2 for the porous SiC without PMMA spheres, 0.47 × 1012 m2 for the porous SiC with 10 wt% PMMA spheres, and 0.82 × 1012 m2 for the porous SiC with 20 wt% PMMA.  相似文献   

6.
《Ceramics International》2015,41(8):9239-9243
BaO–CaO–Al2O3–B2O3–SiO2 (BCAS) glass–ceramics can be used as sealant for large size planar anode-supported solid oxide fuel cells (SOFCs). BCAS glass–ceramics after heat treatment for different times were characterized by means of thermal dilatometer, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the coefficients of thermal expansion (CTE) of BCAS glass–ceramics are 11.4×10−6 K−1, 11.3×10−6 K−1 and 11.2×10−6 K−1 after heated at 750 °C for 0 h, 50 h, and 100 h, respectively. The CTE of BCAS matches that of YSZ, Ni–YSZ and the interconnection of SOFC. Needle-like barium silicate, barium calcium silicate and hexacelsian are crystallized in the BCAS glass after heat-treatment for above 50 h at 750 °C. The glass–ceramics green tape prepared by aqueous tape casting can be directly applied in sealing the cell of SOFCs with 10 cm×10 cm. The open circuit voltage (OCV) of the cell keeps 1.19 V after running for 280 h at 750 °C and thermal cycling 10 times from 750 °C to room temperature. The maximum power density is 0.42 W/cm2 using pure H2 as fuel and air as oxidation gas. SEM images show no cracks or pores exist in the interface of BCAS glass–ceramics and the cell.  相似文献   

7.
《Ceramics International》2016,42(3):4285-4289
Decreasing the electrolyte thickness is an effective approach to improve solid oxide fuel cells (SOFCs) performance for intermediate-temperature applications. Sm0.2Ce0.8O2−δ (SDC) powders with low apparent density of 32±0.3 mg cm−3 are synthesized by microwave combustion method, and SDC electrolyte films as thin as ~10 μm are fabricated by co-pressing the powders onto a porous NiO–SDC anode substrate. Dense SDC electrolyte thin films with grain size of 300–800 nm are achieved at a low co-firing temperature of 1200 °C. Single cells based on SDC thin films show peak power densities of 0.86 W cm−2 at 650 °C using 3 vol% humidified H2 as fuel and ambient air as oxidant. Both the thin thickness of electrolyte films and ultra-fine grained anode structure make contributions to the improved cell performance.  相似文献   

8.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

9.
Ni/Sm-doped ceria (SDC) cermet was prepared from two types of NiO/SDC mixed powders: Type A—Mechanical mixing of NiO and SDC powders of micrometer-sized porous secondary particles containing loosely packed nanometer-sized primary particles. The starting powders were synthesized by calcining the oxalate precursor formed by adding the mixed nitrate solution of Ce and Sm or Ni nitrate solution into oxalic acid solution. Type B—Infiltration of Ni(NO3)2 solution into the SDC porous secondary particles subsequently freeze-dried. Type B powder gave denser NiO/SDC secondary particles with higher specific surface area than Type A powder. The above two types powders were sintered in air at 1100–1300 °C and annealed in the H2/Ar or H2/H2O atmosphere at 400–700 °C. Increased NiO content reduced the sinterability of Type A powder but the bulk density of Type B powder compact showed a maximum at 34 vol.% NiO (25 vol.% Ni). Type B cermet was superior to Type A cermet in achieving fine-grained microstructure and a homogeneous distribution of Ni and SDC grains. The electrical resistance of the produced cermet decreased drastically at 15 vol.% Ni for Type B and at 20 vol.% Ni for Type A.  相似文献   

10.
《Ceramics International》2016,42(10):11772-11779
Equal amounts of Gd0.1Ce0.9O2−δ (GDC) were added to La0.65Sr0.3MnO3−δ/(Y2O3)0.08(ZrO2)0.92 (LSM/YSZ) powder either by physical mixing or by sol–gel process, to produce a porous cathode support for solid oxide fuel cells (SOFCs). The effect of the GDC mixing method was analyzed in view of sinterability, thermal expansion coefficient, microstructure, porosity, and electrical conductivity of the LSM/YSZ composite. GDC infiltrated LSM/YSZ (G-LY) composite showed a highly porous microstructure when compared with mechanically mixed LSM/YSZ (LY) and LSM/YSZ/GDC (LYG) composites. The cathode support composites were used to fabricate the button SOFCs by slurry coating of YSZ electrolyte and a nickel/YSZ anode functional layer, followed by co-firing at 1250 °C. The G-LY composite cathode-supported SOFC showed maximum power densities of 215, 316, and 396 mW cm−2 at 750, 800, and 850 °C, respectively, using dry hydrogen as fuel. Results showed that the GDC deposition by sol–gel process on LSM/YSZ powder before sintering is a promising technique for producing porous cathode support for the SOFCs.  相似文献   

11.
Samarium-doped ceria (SDC) is coated onto a Ni/yttria-stabilized zirconia (Ni/YSZ) anode for the direct use of methane in solid-oxide fuel cells. Porous SDC thin layer is applied to the anode using the sol–gel coating method. The experiment was performed in H2 and CH4 conditions at 800 °C. The cell performance was improved by approximately 20 % in H2 conditions by the SDC coating, due to the high ionic conductivity, the mixed ionic and electronic conductive property of the SDC, and the increased triple phase boundary area by the SDC coating in the anode. Carbon was hardly deposited in the SDC-coated Ni/YSZ anode. The cell performance of the SDC-coated Ni/YSZ anode did not show any significant degradation for up to 90 h under 0.1 A cm?2 at 800 °C. The porous thin SDC coating on the Ni/YSZ anode provided the electrochemical oxidation of CH4 over the whole anode, and minimized the carbon deposition by electrochemical carbon oxidation.  相似文献   

12.
Nickel oxide–yttira stabilized zirconia (NiO–YSZ) interdispersed composite (IC) particles were prepared by a mechanochemical processing using NiO and YSZ nanoparticles. Transmission electron microscopy (TEM) revealed that primally particles of YSZ (75 nm) and NiO (160 nm) were presented alternatively in the composite particles. Specific surface area (SSA) decreased from 8.6 to 7.1 m2/g during the mechanochemical processing. The SSA reduction suggested that the chemically bound NiO/YSZ hetero-interfaces were formed during the processing. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) visualized that the anode made from the IC particles consisted of three-dimensional textured structure of fine Ni and YSZ networks (grain size of them was approximately 500 nm) with 34 vol% of porosity. The anode demonstrated not only low polarization of 152 mV at 1 A/cm2 even under the operation at 700 °C but also long-term stability for 920 h.  相似文献   

13.
The effects of Mn3O4 addition and reductive atmosphere (N2:H2 = 97:3) annealing on the microstructure and phase stability of yttria stabilized zirconia (YSZ) ceramics during sintering at 1500 °C for 3 h in air and subsequent annealing in a reductive atmosphere were investigated. Mn3O4 added 6 mol% YSZ (6YSZ) and 10 mol% YSZ (10YSZ) ceramics were prepared via the conventional solid-state reaction processes. The X-ray diffraction results showed that a single cubic phase of ZrO2 was obtained in 1 mol% Mn3O4 added 6YSZ ceramic at a sintering temperature of 1500 °C for 3 h. A trace amount of monoclinic ZrO2 phases were observed for 1 mol% Mn3O4 added 6YSZ ceramics after annealing at 1300 °C for 60 cycles in a reductive atmosphere by transmission electron microscopy. Furthermore, a single cubic ZrO2 phase existed stably as Mn3O4 added 10YSZ ceramics was annealed at 1300 °C for 60 cycles in reductive atmosphere.  相似文献   

14.
Porous yttria-stabilized zirconia (YSZ) ceramics with unidirectionally aligned pore channels were prepared by freezing YSZ/tert-butyl alcohol (TBA) slurry under different freezing temperatures of ?30, ?78 and ?196 °C, respectively. After removing the frozen TBA via freeze-drying in vacuum at ?50 °C, the green samples were sintered at 1450 °C for 2 h in air. The results showed that the freezing temperature significantly influenced microstructure and properties of the porous YSZ ceramics. Both microstructure observation and pore size distribution indicated that the pore channel size decreased significantly with decreasing freezing temperature, regardless of microstructure variations in the individual sample. Both porosity and room-temperature thermal conductivity of the porous YSZ ceramics varied under different freezing temperatures. Regardless of microstructure variations in the samples under different freezing temperatures, all samples had unidirectional pore channels with increasing pore channel size along the freezing direction. The fabricated samples had remarkably low thermal conductivities both in directions perpendicular and parallel to the channel direction, thus rendering them suitable for applications in thermal insulations.  相似文献   

15.
A 500 nm thick thin film YSZ (yttria-stabilized zirconia) electrolyte was successfully fabricated on a conventionally processed anode substrate by spin coating of chemical solution containing slow-sintering YSZ nanoparticles with the particle size of 20 nm and subsequent sintering at 1100 °C. Incorporation of YSZ nanoparticles was effective for suppressing the differential densification of ultrafine precursor powder by mitigating the prevailing bi-axial constraining stress of the rigid substrate with numerous local multi-axial stress fields around them. In particular, adding 5 vol% YSZ nanoparticles resulted in a dense and uniform thin film electrolyte with narrow grain size distribution, and fine residual pores in isolated state. The thin film YSZ electrolyte placed on a rigid anode substrate with the GDC (gadolinia-doped ceria) and LSC (La0.6Sr0.4CoO3?δ) layers deposited by PLD (pulsed laser deposition) processes revealed that it had fairly good gas tightness relevant to a SOFC (solid oxide fuel cell) electrolyte and maintained its structural integrity during fabrication and operation processes. In fact, the open circuit voltage was 1.07 V and maximum power density was 425 mW/cm2 at 600 °C, which demonstrates that the chemical solution route can be a viable means for reducing electrolyte thickness for low- to intermediate-temperature SOFCs.  相似文献   

16.
《Ceramics International》2015,41(4):5984-5991
The application of the La2NiO4+δ (LNO), one of the Ruddlesden–Popper series materials, as a cathode material for intermediate temperature solid oxide fuel cells is investigated in detail. LNO is synthesized via a complex method using ethylenediaminetetraacetic acid (EDTA) and citric acid. The effect of the calcination temperature of the LNO powder and the sintering temperature of the LNO cathode layer on the anode-supported cell, Ni–YSZ/YSZ/GDC/LNO, is characterized in view of the charge transfer resistance and the mass transfer resistance. Charge transfer resistance was not significantly affected by calcination and sintering temperature when the sintering temperature was not lower than the calcination temperature. Mass transfer resistance was primarily governed by the sintering temperature. The unit cell with the LNO cathode sintered at 1100 °C with 900 °C-calcined powder presented the lowest polarization resistance for all the measured temperatures and exhibited the highest fuel cell performances, with values of 1.25, 0.815, 0.485, and 0.263 W cm−2 for temperatures of 800, 750, 700, and 650 °C, respectively.  相似文献   

17.
《Ceramics International》2015,41(8):9686-9691
A novel solid state reaction was adopted to prepare Sm0.2Ce0.8O1.9 (SDC) powder. A mixed oxalate Sm0.2Ce0.8(C2O4)1.5·2H2O was synthesized by milling a mixture of cerium acetate hydrate, samarium acetate hydrate, and oxalic acid for 5 h at room temperature. An ultra-fine SDC powder with the primary particle size of 5.5 nm was obtained at 300 °C. The ultra-low temperature for the formation of SDC phase was due to the atomic level mixture of the Sm3+ and Ce4+ ions. The crystal sizes of SDC powders at 300 °C, 550 °C, 800 °C, and 1050 °C were 5.5 nm, 11.4 nm, 24.1 nm and 37.5 nm, respectively. The sintering curves showed that the powder calcined at lower temperature was easier to be sintered owning to its smaller particle size. A solid oxide electrolytic cell (SOEC), comprising porous La0.8Sr0.2Cu0.1Fe0.9O3−δ (LSCF) for substrate, LSCF–SDC for active electrode, SDC for electrolyte, and LSCF–SDC for symmetric electrode, was fabricated by dip-coating and co-sintering techniques. An extremely dense SDC film with the thickness of 20 μm was obtained at only 1200 °C, which was about 100–300 °C lower than the literatures׳ reports. The designed SOEC was proved to work effectively for decomposing NO (3500 ppm, balanced in N2), 80% NO can be decomposed at 600 °C.  相似文献   

18.
Electrophoretic deposition (EPD) of YSZ electrolyte films onto porous NiO–YSZ composite substrates that had been pre-coated with graphite thin layers was carried out in the following two means for solid oxide fuel cell application: one was EPD based on electrophoretic filtration by which YSZ films were formed on the reverse sides without the graphite layers; the other was EPD on a graphite thin layer pre-coated on the substrates. Dense YSZ electrolyte thin films were successfully obtained in both means, although it was difficult to form YSZ films that were strongly adherent to the substrates using the latter means. The densification of YSZ films was assisted by shrinkage of the substrates during co-firing. A single cell was constructed on ca. 5 μm thick dense YSZ films fabricated using the EPD based on electrophoretic filtration. Maximum power densities over 0.06, 0.35, 1.10 and 2.01 W/cm2 were attained, respectively, at 500, 600, 700 and 800 °C on the cell.  相似文献   

19.
The electrical properties and oxygen permeability of glass–ceramics 55SiO2–27BaO–18MgO, 55SiO2–27BaO–18ZnO and 50SiO2–30BaO–20ZnO (%mol), which possess thermal expansion compatible with that of yttria-stabilized zirconia (YSZ) solid electrolytes, were studied between 600 and 950 °C in various atmospheres. The ion transference numbers, determined by the modified electromotive force (e.m.f.) technique under oxygen partial pressure gradients of 21 kPa/(1–8) × 102 Pa and 21 kPa/(1 × 10−18–2 × 10−12) Pa, are close to unity both under oxidizing and reducing conditions. The electronic contribution to the total conductivity increases slightly on increasing temperature, but is lower than 2% and 7% for the Zn- and Mg-containing compositions, respectively. The conductivity values measured by impedance spectroscopy vary in the range (1.4–7.8) × 10−6 S/cm at 950 °C under both oxidizing and reducing conditions, with activation energies of 122–154 kJ/mol and a minor increase in H2-containing atmospheres, indicating possible proton intercalation. In agreement with the electrical measurements which indicate rather insulating properties of the glass–ceramics, the oxygen permeation fluxes through sintered sealants and through sealed YSZ/glass–ceramics/YSZ cells are very low, in spite of an increase of 15–40% during 200–230 h under a gradient of air/H2–H2O–N2 due to slow microstructural changes.  相似文献   

20.
《Ceramics International》2017,43(2):1740-1746
Porous Ni-YSZ cermets are prepared by reducing NiO-YSZ composites upon exposure to (Ar+6% H2) gas. The porous cermets are prepared by the addition of carbon black (0.123 mol) to mixed NiO-YSZ powders and the conversion of NiO to Ni in the NiO-YSZ composites. The microstructure and bending strength of porous Ni-YSZ cermets as functions of sintering temperature and Nb2O5 content are discussed. The Ni-YSZ cermets consist of uniformly distributed Ni and YSZ grains as well as pores. Both higher sintering temperature and higher Nb2O5 content yield lower porosity, thus increasing the bending strength. The bending strength of 0.00470 mol% Nb2O5–containing Ni-YSZ cermets sintered at 1400 °C (111 MPa) is about two times higher than that of Nb2O5–free Ni-YSZ cermets sintered at 1400 °C (59 MPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号