首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dense SiC (97.3–99.2% relative density) of 1.1–3.5 μm average grain size was prepared by the combination of colloidal processing of bimodal SiC particles with sintering additives (Al2O3 plus Y2O3, 2–4 vol%) and subsequent hot-pressing at 1900–1950 °C. The fracture toughness of SiC was sensitive to the grain boundary thickness which was controlled by grain size and amount of oxide additives. A maximum fracture toughness (6.2 MPa m1/2) was measured at 20 nm of grain boundary thickness. The mixing of 30 nm SiC (25 vol%) with 800 nm SiC (75 vol%) was effective to reduce the flaw size of fracture origin, in addition to a high fracture toughness, leading to the increase of flexural strength. However, the processing of a mixture of 30 nm SiC (25 vol%)–330 nm SiC (75 vol%) provided too small grains (1.1 μm average grain size), resultant thin grain boundaries (12 nm), decreased fracture toughness, and relatively large defect of fracture origin, resulting in the decreased strength.  相似文献   

2.
TaC/SiC composites with 20 vol.% SiC addition were densified by spark plasma sintering at 1600–1900 °C for 5 min under 40 MPa. Effects of sintering temperatures on the densification, microstructures and mechanical properties of composites were investigated. The results showed the materials achieved >98% of theoretical density at a temperature as low as 1600 °C. While the TaC grains grew slightly with the sintering temperature increasing, the SiC particles in materials decreased in size. Equiaxed to elongated grain morphology transformation was observed in the SiC phase in the 1900 °C material to obtain a higher flexural strength and fracture toughness of 715 MPa and 6.7 MPa m1/2, respectively. Lattice enlargement of the TaC phase in the 1900 °C material suggested possible Si diffusion into TaC grains. Ta was also detected in SiC grains by energy dispersive spectroscopy. Glassy pockets present at multi-grain junctions explained the enhanced densification.  相似文献   

3.
Immersion corrosion tests of TiC0.8, TiC, TiC–20 vol% SiC, TiC–40 vol% SiC and SiC have been performed in molten FLiNaK salt at 800 °C for 25–200 h under argon cover gas. All of these five samples showed small mass loss and relatively good corrosion resistance in molten FLiNaK salt. The corrosion patterns of TiC0.8, TiC, TiC–20 vol% SiC and TiC–40 vol% SiC were inter-granular corrosion, which were attributed to the depletion of Ti along the grain boundaries. SiC exhibited a general corrosion process in which a carbon-rich layer formed on the surface, resulting from the depletion of Si. The carbon-rich layer protected SiC against further corrosion, hence lowering the corrosion rate. The corrosion results of TiC–20% SiC and TiC–40% SiC revealed the corrosion resistance of TiC could be improved by adding SiC. And the contribution of SiC to better corrosion resistance has been elucidated.  相似文献   

4.
Fourteen rare earth elements in their nitrate form were evaluated as sintering additives for β-SiC. All rare earth nitrates transformed to oxides by a reaction with the surface-adsorbed thin SiO2 during heat treatment, which enhanced the density of the SiC monolith without decomposing SiC. In particular, Sc, Yb, Tm, Er and Ho were quite effective sintering additives; a > 99% relative density was observed by the addition of 5 wt.% rare earth oxide, whereas the other rare earth additives (Lu, Dy, Tb, Gd, Eu, Sm, Nd, Ce and La) revealed 77–92% density. Moreover, a fine 156 nm-sized SiC grain could be acquired by Sc addition, whereas the other additives showed a SiC grain size of approximately 1 μm. The mean hardness and KIc of the dense SiC containing rare earth elements were 24–27 GPa and 3.3–5.0 MPa m1/2, respectively.  相似文献   

5.
The effect of grain growth on the thermal conductivity of SiC ceramics sintered with 3 vol% equimolar Gd2O3-Y2O3 was investigated. During prolonged sintering at 2000 °C in an argon or nitrogen atmosphere, the β  α phase transformation, grain growth, and reduction in lattice oxygen content occurs in the ceramics. The effects of these parameters on the thermal conductivity of liquid-phase sintered SiC ceramics were investigated. The results suggest that (1) grain growth achieved by prolonged sintering at 2000 °C accompanies the decrease of lattice oxygen content and the occurrence of the β  α phase transformation; (2) the reduction of lattice oxygen content plays the most important role in enhancing the thermal conductivity; and (3) the thermal conductivity of the SiC ceramic was insensitive to the occurrence of the β  α phase transformation. The highest thermal conductivity obtained was 225 W(m K)−1 after 12 h sintering at 2000 °C under an applied pressure of 40 MPa in argon.  相似文献   

6.
SiC ceramics were prepared from nanosized β-SiC powder with different compositions of AlN and Y2O3 sintering additives by spark plasma sintering (SPS) at 1900 °C for 600 s in N2. The relative density of the sintered SiC specimens increased with increasing amount of AlN, reaching a relative density higher than 99%, while at the same time grain size decreased significantly. The smallest average grain size of 150 nm was observed for SiC sample sintered with 10 vol% of additives consisting of 90 mol% AlN and 10 mol% Y2O3. Fully dense nanostructured SiC ceramics with inhibited grain growth were obtained by the AlN additive and SPS technique. The flexural strength of the SiC body containing 70 mol% AlN and 30 mol% Y2O3 additives reached the maximum value of 1000 MPa. The SiC bodies prepared with AlN and Y2O3 additives had the fracture toughness of around 2.5 MPam1/2.  相似文献   

7.
Transparent lutetium aluminum garnet (Lu3Al5O12, LuAG) was fabricated by reactive spark plasma sintering. The effect of sintering temperature on the crystal phase, microstructure, transparency and mechanical properties of LuAG bodies was investigated. Fully dense and single-phase LuAG bodies were obtained at sintering temperatures 1573–1923 K. The average grain size increased from 0.18 to 0.52 μm with increasing sintering temperature from 1573 to 1773 K, and grain growth became significant at 1823 K. Transmittance showed a maximum value of 77.8% at 2000 nm at a sintering temperature of 1773 K after annealing at 1423 K in air for 43.2 ks. The Vickers hardness increased from 14.2 to 17.2 GPa with decreasing grain size from 7.45 to 0.23 μm.  相似文献   

8.
Two-step sintering (TSS) was applied to suppress the accelerated grain growth of sub-micron (~150 nm) alumina powder. The application of an optimum TSS regime led to a remarkable decrease of grain size down to ~500 nm; while the grain size of the full-dense structures produced by conventional sintering ranged between 1 and 2 μm. To find how important the temperatures at sintering steps might be, several TSS regimes were conducted. The results showed that the temperatures at both sintering steps play vital roles in densification and grain growth of the alumina compacts. Based on the results, the optimum regime consisted of heating the green bodies up to 1250 °C (first step) and then holding at 1150 °C for more than 60 h (second step). This yielded the finest microstructure with no deterioration of the densification. Heating at 1300 °C (first step) and then at 1200 °C (second step) was not a successful procedure. Lowering the temperature of the second step down to 1100 °C resulted in exhaustion of the densification at 88% -theoretical density. A nearly full-dense structure with an average grain size of 850 nm was obtained when the temperature of the second step was increased to 1150 °C. Empirical results show that not only the first step temperature has to be high enough to reach a structure containing unstable pores, but the second sintering temperature must also be high enough to activate the densification mechanism without grain growth. This means that a considerable densification at the first step does not imply enough second-step densification.  相似文献   

9.
《Ceramics International》2016,42(5):6168-6177
C-axis textured SiC ceramics were prepared by a strong magnetic field of 6 T assisted gel-casting and subsequent pressureless sintering. The optimal suspension parameters for gel-casting were determined by analyzing the influences of pH value and dispersant content on the stability and dispersibility of suspensions. The effect of sintering conditions on the texture development and properties of SiC ceramics was discussed. It was found that the increasing sintering temperature or holding time promoted the densification process of SiC ceramics. The c-axis of SiC grain was aligned parallel to the magnetic field by applying a strong magnetic field of 6 T. The degree of texture of SiC ceramics showed a slightly increasing trend with the increase of sintering temperature or holding time. When the samples were sintered at 1950 °C for 4 h or 6 h, the large elongated grains were formed in the samples, leading to the extremely evident anisotropic microstructure on different planes. Textured SiC ceramics exhibited the anisotropic bending strength.  相似文献   

10.
《Ceramics International》2016,42(16):18612-18619
The synergetic effects SiC particles and short carbon fibers (Csf) as well as hot pressing parameters (sintering temperature, dwell time and applied pressure) on the grain growth of ZrB2-based composites were investigated. Taguchi methodology was employed for the design of experiments to study the microstructure and grain growth of ZrB2–SiC–Csf ceramic composites. Three hot pressing parameters and SiC/Csf ratio were selected as the scrutinized variables. The sintering temperature and SiC/Csf ratio were identified by ANOVA as the most effective variables on the gain growth of ZrB2-based samples. Removal of oxide impurities from the surface of starting particles by the reactant Csf, not only hindered the extraordinary grain growth of ZrB2 matrix, but also improved the sinterability of the ceramics. A fully dense ceramic with an average grain size of 8.3 µm was obtained by hot pressing at 1850 °C for 30 min under 16 MPa through adding 20 vol% SiC and 10 vol% Csf to the ZrB2 matrix. SEM observations and EDS analysis verified the in-situ formation of ZrC which can restrain the growth of ZrB2 particles, similar to the role of SiC, by the pinning of grain boundaries as another stationary secondary phase.  相似文献   

11.
A hybrid processing route based on vacuum infiltration, electrophoretic deposition, and hot-pressing was adopted to fabricate dense and tough SiCf/SiC composites. The as-received Tyranno SiC fabric preform was infiltrated with phenolic resin containing 5 wt.% FeO and SiC powders followed by pyrolysis at 1700 °C for 4 h to form an interphase. Electrophoretic deposition was performed to infiltrate the SiC-based matrix into the SiC preforms. Finally, SiC green tapes were sandwiched between the SiC fabrics to control the volume fraction of the matrix. Densification close to 95% ρtheo was achieved by incorporating 10 wt.% Al2O3-Sc2O3 sintering additive to facilitate liquid phase sintering at 1750 °C and 20 MPa for 2 h. X-ray diffraction and Raman analyses confirmed the catalytic utility of FeO by the formation of a pyrolytic carbon phase. The flexural response was explained in terms of the extensive fractography results and observed energy dissipating modes.  相似文献   

12.
Two-step sintering (TSS) was applied to control the grain growth during sintering of a novel calcium magnesium silicate (Ca3MgSi2O8 – Merwinite) bioceramic. Sol–gel derived nanopowders with the mean particle size of about 90 nm were sintered under different TSS regimes to investigate the effect of sintering parameters on densification behavior and grain growth suppression. Results showed that sintering of merwinite nanopowder under optimum TSS condition (T1 = 1300 °C, T2 = 1250 °C) yielded fully dense bodies with finest microstructure. Merwinite compacts held at T2 = 1250 °C for 20 h had the average grain size of 633 nm while the relative density of about 98% was achieved. Mechanical testing was performed to investigate the effect of grain growth suppression on the hardness and fracture toughness. Comparison of mechanical data for samples sintered under two sintering regimes, including TSS and normal sintering (NS), showed TSS process resulted in significant enhancement of fracture toughness from 1.77 to 2.68 MPa m1/2.  相似文献   

13.
Nano-powder composites of 3Y-TZP doped with 8 mol% CuO were processed by spark-plasma sintering (SPS). A 96% dense composite ceramic with an average grain size of 70 nm was obtained by applying the SPS process at 1100 °C and 100 MPa for 1 min. In contrast to normal, pressureless, sintering during SPS reactions between CuO and 3Y-TZP were suppressed, the CuO phase was reduced to metallic Cu, while the 3Y-TZP phase remained almost purely tetragonal. Annealing after SPS results in grain growth and tetragonal to monoclinic zirconia phase transformation. The grain size and monoclinic zirconia phase content are strongly dependent on the annealing temperature. By combining the processing techniques studied in this work, including traditional pressureless sintering, properties of the composite ceramic can be tuned via manipulation of microstructure. Tuning the mechanical properties of dense 8 mol% CuO doped 3Y-TZP composite ceramic by utilising different processing techniques is given as an example.  相似文献   

14.
《Ceramics International》2016,42(3):3836-3848
The effects of applied pressure and temperature during spark plasma sintering (SPS) of additive-containing nanocrystalline silicon carbide on its densification, microstructure, and mechanical properties have been investigated. Both relative density and grain size are found to increase with temperature. Furthermore, with increase in pressure at constant temperature, the relative density improves significantly, whereas the grain size decreases. Reasonably high relative density (~96%) is achieved on carrying out SPS at 1300 °C under applied pressure of 75 MPa for 5 min, with a maximum of ~97.7% at 1500 °C under 50 MPa for 5 min. TEM studies have shown the presence of an amorphous phase at grain boundaries and triple points, which confirms the formation of liquid phase during sintering and its significant contribution to densification of SiC at relatively lower temperatures (≤1400 °C). The relative density decreases on raising the SPS temperature beyond 1500 °C, probably due to pores caused by vaporization of the liquid phase. Whereas β-SiC is observed in the microstructures for SPS carried out at temperatures ≤1500 °C, α-SiC evolves and its volume fraction increases with further increase in SPS temperatures. Both hardness and Young׳s modulus increase with increase in relative density, whereas indentation fracture toughness appears to be higher in case of two-phase microstructure containing α and β-SiC.  相似文献   

15.
This work analyses the effect of mullite additions on the fracture mode of alumina. Mullite is proposed as an alternative to SiC for the second phase particles because the thermal expansion mismatch between alumina and mullite is of the same sign and order as that between alumina and SiC. Three alumina–5 vol.% mullite composites formed by alumina matrices with similar average grain sizes in the micrometric range (≈1 μm) and second phase sub-micrometric (50–350 nm) and nanometric mullite (<50 nm) particles located at grain boundaries and triple points were prepared. The fracture mode of the alumina matrix changed from predominantly intergranular to predominantly transgranular. This change became more significant as the size of the sub-micrometric fraction of mullite particles decreased.  相似文献   

16.
《Ceramics International》2015,41(4):5926-5936
Graphene nanoplatelet (GNP) reinforced alumina is synthesized by spark plasma sintering (SPS) using process conditions of 1100–1500 °C, 3–10 min dwell time, and 45–90 MPa in order to investigate the effects of GNP on sintering behavior. High volume fractions of GNP (5–15 vol%) are utilized in order to accentuate effects of GNPs. GNP effects on sintering behavior are assessed by evaluating microstructural evolution, grain growth kinetics, and microhardness. The addition of GNPs is found to suppress grain growth by a grain wrapping mechanism resulting in a 10% increase in activation energy when GNP content is increased beyond 5 vol %. Grain growth suppression partially mitigates a decrease in hardness due to the introduction of the soft GNP phase. Evidence of GNPs serving as a sintering aid are seen at short sintering times (3 min), while densification and grain size are observed to level off with extended sintering time (10 min). The application of higher pressures enhances densification, which enables GNPs to more effectively wrap around grains resulting in enhanced grain growth suppression.  相似文献   

17.
Experimental sintering studies on Al2O3 powder (200 nm and 600 nm) were done at a heating rate of 1600 °C/min. The microstructural changes of specimens were examined and corresponding detailed data on the densification and grain size as a function of sintering time were presented. The grain-growth transition behavior during sintering was discussed. The results showed that the neck growth caused principally by surface diffusion could be negligible within 2 min. With subsequent increases of sintering time, grain growth promoted by grain boundary and lattice diffusion occurred.  相似文献   

18.
Aluminum borocarbide powders (Al3BC3 and Al8B4C7) were synthesized, and the ternary powders were used as a sintering additive of SiC. The densification of SiC was nearly completed at 1670 °C using spark plasma sintering (SPS) and pressureless sintering was possible at 1950 °C. The sintering behavior of SiC using the new additive systems was nearly identical with that using the conventional Al–B–C system, but grain growth was suppressed when adding the borocarbides. In addition, oxidation of the fine additive powders did not intensively occur in air, which has been a problem in the case of the Al–B–C system for industrial application. The hardness, Young's modulus and fracture toughness of a sintered SiC specimen were 21.6 GPa, 439 GPa and 4.6 MPa m1/2, respectively. The ternary borocarbide powders are efficient sintering additives of SiC.  相似文献   

19.
《Ceramics International》2016,42(11):13285-13290
1 at% Nd, 3 at% Y doped CaF2 transparent ceramics were obtained by hot pressing at the sintering temperature varing from 500 to 800 °C under vacuum environment with co-precipitated CaF2 nanopowders. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis showed that the obtained nanoparticles were single fluorite phase with grain size around 26 nm. Scanning electron microscopy (SEM) observations of the Nd, Y: CaF2 ceramics indicated that the mean grain size of the ceramic sintered at 800 °C was about 748 nm. The influence of the temperature on the grain size, microstructure and optical transmittance was investigated. For the ceramic sintered at 800 °C, the transmittance was 85.49% at the wavelength of 1200 nm. The room temperature emission spectra of Nd: CaF2 and Nd, Y: CaF2 ceramics were measured and discussed.  相似文献   

20.
《Ceramics International》2015,41(7):8541-8551
Densification behavior and microstructure evolution of hot-pressed SiC–SiBCN ceramics were studied between 1660 °C and 1830 °C. Polyborosilazane was chosen as the SiBCN precursor and pyrolyzed at 1000 °C in inert atmosphere before use. Samples with SiBCN contents of 10% and 20% in weight were prepared. During the sintering, at temperatures <1660 °C, the density of all the samples showed a minor increase because of solid state particles rearrangement. Above 1660 °C, the density increased rapidly because of the grain boundary sliding with a non-Newtonian viscous boundary phase. After grain boundary sliding, grain-boundary diffusion enhanced by B and C elements from the SiBCN material was responsible for the further densification. The microstructure of the samples hot pressed at 1660 °C appeared particle packing state. The two samples can achieve almost full density when they were hot pressed at 1830 °C/40 MPa for 90 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号