首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2007,33(6):969-978
Magnesium aluminate (MgAl2O4) spinel powders were prepared by co-precipitation of stoichiometric amounts of magnesium and aluminum chlorides at 80 °C. Some sintering aids such as ZnO and MnO2 were added in the form of chlorides during the precipitation to study their effect on densification. The co-precipitated materials were a mixture of Mg–Al double hydroxide with the presence of few amounts of gibbsite and brucite. After heat-treatment of the precipitated powders up to 1000 °C, a crystalline spinel powder was obtained. The presence of 0.5, 1, 2 and 3 wt.% of ZnO or MnO2 as sintering aids increased sinterability after firing up to 1550 °C. The highest density was obtained for the samples containing 2 wt.% ZnO or 3 wt.% MnO2 which reached about >94 and 96% theoretical density (TD), respectively. The mechanical properties increased by adding ZnO or MnO2, an exception being the sample containing 0.5 wt.% of ZnO for which relatively smaller value were obtained.  相似文献   

2.
《Ceramics International》2017,43(9):6891-6897
Transparent magnesium aluminate spinel (MgAl2O4) ceramics were fabricated by hot-pressing of the MgO and α-Al2O3 powder mixture using LiF as a sintering aid. Effects of the LiF additive on densification, microstructure and optical properties of MgAl2O4 ceramics were systematically investigated. It has been found that the addition of LiF can effectively remove the porosity and increase the optical transparency of MgAl2O4 ceramics. For the spinel ceramics HP-ed at 1550 °C for 3 h with 1 wt% LiF addition, the average grain size is about 36 µm and the in-line transmittance exceeds 60% at the wavelength of 800 nm.  相似文献   

3.
Transparent MgAl2O4 spinel ceramics were processed from sub-micrometric commercial powder by applying a two-step procedure: pressureless sintering under vacuum followed by hot isostatic pressing. To limit grain growth and to avoid secondary reactions or impurities, no additives or sintering aids were added to the powder. First, pressureless sintering at 1500 °C during 2 h under vacuum led to opaque samples due to a high level of porosity. To improve the optical quality of the MgAl2O4 ceramics and the in-line transmission in the visible range, a post-treatment by hot isostatic pressing was applied. Highly transparent ceramics were obtained after a post-treatment at 1800 °C for 10 h with an in-line transmission of 81% at 400 nm and 86% from 950 to 3000 nm for a thickness of 2 mm (98.8% of the theoretical transmission).  相似文献   

4.
《Ceramics International》2015,41(6):7374-7380
Porous magnesium aluminate spinel (MgAl2O4) ceramic supports were fabricated by reactive sintering from low-cost bauxite and magnesite at different temperatures ranging from 1100 to 1400 °C and their sintering behavior and phase evolution were evaluated. The effects of sintering temperature on the pore structure, size and distribution as well as on the main properties of spinel ceramic supports such as flexural strength, nitrogen permeation flux and chemical resistance were investigated. The supports prepared at 1300 °C showed a homogeneous pore structure with the average pore size of 4.42 μm, and exhibited high flexural strength (35.6 MPa), high gas permeability (with nitrogen gas flux of 3057 m3 m−2 h−1 under a trans-membrane pressure of 0.1 MPa) and excellent chemical resistance.  相似文献   

5.
《Ceramics International》2017,43(17):15246-15253
MgAl2O4 nanoparticles (NPs) were prepared by sol–gel method using aluminium nitrate, magnesium nitrate and citric acid as starting materials, phenolic formaldehyde resin and carbon black as additives. Growth of MgAl2O4 NPs in different heat treatment conditions (temperature, atmosphere, carbon additives and in Al2O3-C system) was investigated. MgAl2O4 NPs were formed at 600 °C in air atmosphere with serious agglomeration of nanoparticles having diameter of approximate 30 nm. The size of MgAl2O4 NPs increased greatly from 40 to 50 nm to several hundreds of nanometres as the temperature was raised from 800 °C to 1400 °C. Partial sintering of NPs was observed upon heating at temperatures higher than 1200 °C in air. In reducing atmosphere, the size of MgAl2O4 NPs (about 30–50 nm) changed slightly with increasing temperature. This was attributed to the dispersion of carbon inclusions in the MgAl2O4 grain boundaries, inducing a steric hindrance effect and inhibiting the growth of particles. MgAl2O4 NPs (30–50 nm) in the Al2O3-C system were in-situ formed at high temperatures with the use of dried precursor gels. MgAl2O4 NPs can contribute to improving the thermal shock resistance of Al2O3-C materials.  相似文献   

6.
This paper reports the development of a new process for the synthesis of spinel nano powder via microwave assisted high energy ball milling of a powder mixture containing Al(OH)3 and Mg(OH)2. X-ray diffraction (XRD), Simultaneous thermal analysis (STA), FTIR spectrometer, BET and scanning electron microscopy (SEM) techniques were utilized to characterize the as-milled and annealed samples. X-ray diffraction results provide evidence for the formation of a completely amorphous phase after milling for 8 h. It is found that highly ordered MgAl2O4 spinel can be obtained by calcination the as-milled powder over 800 °C. Also, SEM observations of synthesized powders showed that the particle size of powders lies in the nano meter range compared with the BET results (about 28–149 nm). The DTA–TG analyses were carried out to investigate the effect of microwave heating on the synthesis temperature compared to the conventional heat treatment by conventional furnace. Synthesis of powders with different heating methods showed that microwave heating reduces the synthesis temperature by about 200 °C.  相似文献   

7.
MgO–C refractories with different carbon contents have been developed to meet the requirement of steel-making technologies. Actually, the carbon content in the refractories will affect their microstructure. In the present work, the phase compositions and microstructure of low carbon MgO–C refractories (1 wt% graphite) were investigated in comparison with those of 10 wt% and 20 wt% graphite, respectively. The results showed that Al4C3 whiskers and MgAl2O4 particles formed for all the specimens fired at 1000 °C. With the temperature up to 1400 °C, more MgAl2O4 particles were detected in the matrix and AlN whiskers occurred locally for high carbon MgO–C specimens (10 wt% and 20 wt% graphite). However, the hollow MgO-rich spinel whiskers began to form locally at 1200 °C and grew dramatically at 1400 °C in low carbon MgO–C refractories, whose growth mechanism was dominated by the capillary transportation from liquid Al at these temperatures.  相似文献   

8.
Incorporating Ni-laden waste sludge into kaolinite-based construction ceramic materials appears promising based on the identified nickel bearing phases, evaluated incorporation efficiency and nickel leachability of the products. Nickel aluminate spinel (NiAl2O4) results from sintering kaolinite and nickel oxide between 990 and 1480 °C, with more than 90% incorporation efficiency achieved at 1250 °C and 3 h sintering. At lower temperature (990 °C), NiAl2O4 formed from the reaction between nickel oxide and the defect spinel generated from the kaolinite–mullite reaction series. In addition to sintering temperature and time, four raw material mixing procedures were employed, and the ball-milled slurry samples had the highest nickel incorporation efficiency. Prolonged leach testing of NiO, NiAl2O4 and the product from sintered kaolinite + NiO mixtures was carried out using the TCLP extraction fluid #1 (pH 4.9) to evaluate the product stability, and the results revealed the superiority of spinel products over NiO in stabilizing nickel.  相似文献   

9.
《Ceramics International》2017,43(13):10123-10129
Dense Si3N4 ceramic with BaO-Al2O3-SiO2 low temperature glass powders as sintering aids were prepared by pressureless sintering techniques at a relatively low temperature (1550 °C). Four kinds of glass powders of compositions melting at 1120 °C, 1300 °C, 1400 °C and 1500 °C, respectively, have been introduced as sintering aids. XRD results demonstrate that the BaO-Al2O3-SiO2 glass powders reacted with BaAl2O4 and converted into hexagonal celsian, which is a high-temperature phase with melting point of 1760 °C, so being beneficial to the high temperature properties of the materials. In addition, a portion of α-Si3N4 transformed to rod like β-Si3N4 with high aspect ratio as shown by XRD and SEM analysis. The bulk density increased with the rise of the melting temperature of the BaO-Al2O3-SiO2 glass powders, the sample obtained with the BaO-Al2O3-SiO2 glass powder melting at 1500 °C reaching a maximum density of 98.8%, an high flexural strength (373 MPa) and a fracture toughness (4.8 MPa m1/2).  相似文献   

10.
The experiment was carried out to produce fine-grained ceramics with a grain size of less than 5 μm. Ultradispersed oxide mixture MgO–Al2O3 (weight ratio MgO/Al2O3 value was 3/97) and solid solution Ce0.09Zr0.91O2?δ were used as initial nanopowders with a crystallite size less than 10 nm. Dilatometric investigation was carried out at the temperature interval 1100–1550 °C using three temperature modes, included various heating and cooling rates and isothermal plots. Initial metal oxide powders were obtained by modified sol–gel technique using N-containing organic compounds for sol stabilization. It was shown that the role of MgO in nanopowdery composition for sintering is to accelerate the sintering due to the formation of the liquid phase with spinel MgAl6O10. It was determined, that the presence of interim isotherms on the temperature rise curves does not impact the rate and quality of sintering.  相似文献   

11.
《Ceramics International》2017,43(8):6263-6267
Single phase magnesium ferrite (MgFe2O4) nanoparticles were prepared by the coprecipitation method followed by calcination at 700 °C for 1 h. The effects of polyvinyl alcohol (PVA) agent on the structural, microstructure, magnetic properties and AC magnetically induced heating characteristics of MgFe2O4 nanoparticles were investigated. The structure and cation distributions investigated by X-ray diffraction method showed single phase MgFe2O4 powders had partially inverse spinel structure in which the inversion coefficient increased by adding more PVA. The small particle size and narrow size distribution of the coprecipitated MgFe2O4 powders characterized by scanning electron microscopy were achieved using PVA agent. Magnetic properties of MgFe2O4 nanoparticles studied by vibrating sample magnetometry showed ferrimagnetic characteristics with the highest saturation magnetization and coercivity of 24.6 emu/g and 17 Oe, respectively. The coprecipitated MgFe2O4 nanoparticles assisted by PVA exhibited the lower AC heating temperature of 5.6 °C and specific loss power of 2.4 W/g in comparison with 6.1 °C and 2.7 W/g for the powders coprecipitated without using PVA.  相似文献   

12.
BaNd2Ti5O14 powders were directly prepared by high-temperature spray pyrolysis. The powders prepared at temperatures of 1300 and 1500 °C exhibited a pure BaNd2Ti5O14 phase. The powders prepared at 1300 °C were spherical in shape. However, the powders prepared at 1500 °C showed non-spherical shapes. The BaNd2Ti5O14 powders had a composition similar to that of the spray solution. The mean sizes of the BaNd2Ti5O14 powders increased from 0.23 to 0.60 μm when the concentration of the spray solution was increased from 0.01 to 0.2 M. At a sintering temperature of 1100 °C, bridge-like structures were formed between the powders. Pellets sintered at 1300 °C exhibited a dense structure comprising rod-like crystals.  相似文献   

13.
MgAl2O4 bulk samples were fabricated by two different approaches to investigate the effect of slip casting and sintering temperature on their transparency. Three MgAl2O4 samples containing 1 wt% LiF, as the sintering aid, were prepared by the spark plasma sintering process (SPS) at 1400 °C and 1500 °C, under 100 MPa, for 15 min. Also, another MgAl2O4 sample was prepared by slip casting followed by SPS under similar conditions. It was observed that utilizing slip casting led to more transparency (10% in the visible region and 20% in the IR region) due to the more homogeneous structure. It was also observed that by reducing the SPS temperature from 1500 °C to 1400 °C, the transparency increased (20% in the IR region) because of the lower grain growth rate at the lower temperature.  相似文献   

14.
Reaction sintering of MgO and Al2O3 with addition of LiF as sintering additive was used to prepare MgAl2O4 spinel ceramic by hot pressing. The process parameter (temperature, pressure, dwell time), the stoichiometric ratio of MgO to Al2O3 and the selection of the alumina raw powder are equally important for highest transparency of the spinel ceramic. With this optimization highest transparency of 86% in the visible range at λ = 640 nm together with UV transmission of 62% at 200 nm for spinel ceramic with 4 mm thickness was reached.  相似文献   

15.
《Ceramics International》2016,42(7):8290-8295
Aluminum oxynitride (AlON) powders were synthesized by the carbothermal reduction and nitridation process using commercial γ-Al2O3 and carbon black powders as starting materials. And AlON transparent ceramics were fabricated by pressureless sintering under nitrogen atmosphere. The effects of ball milling time on morphology and particle size distribution of the AlON powders, as well as the microstructure and optical property of AlON transparent ceramics were investigated. It is found that single-phase AlON powder was obtained by calcining the γ-Al2O3/C mixture at 1550 °C for 1 h and a following heat treatment at 1750 °C for 2 h. The AlON powder ball milled for 24 h showed smaller particles and narrower particle size distribution compared with the 12 h one, which was benefit for the improvement of optical property of AlON transparent ceramics. With the sintering aids of 0.25 wt% MgO and 0.04 wt% Y2O3, highly transparent AlON ceramics with in-line transmittance above 80% from visible to infrared range were obtained through pressureless sintering at 1850 °C for 6 h.  相似文献   

16.
In order to obtain mullite/zirconia composites, mixtures of aluminum dross and zircon were sintered. Aluminum dross was collected and purified by a milling, sieving and washing process. Stoichiometric mixtures of aluminum dross and zircon were sintered at several temperatures (1400, 1450 and 1500 °C) for several periods of time (2, 4 and 6 h). After the purifying treatment the dross contained mainly Al2O3, AlN, MgAl2O4, SiO2 and metallic Al. A homogeneous mullite matrix with small zirconia particles was obtained by sintering the aluminum dross–zircon samples at 1500 °C for 6 h.  相似文献   

17.
Surface and grain boundary energies are key parameters for understanding and controlling microstructural evolution. However, reliable thermodynamic data on interfaces of ceramics are relatively scarce, limiting the realization of their relevance in processes such as sintering and grain growth. In this work, the heat of sintering itself was used to quantify both surface and grain boundary energies in MgAl2O4 spinel. Nanoparticles were compacted and heated inside a Differential Scanning Calorimeter (DSC) when densification and grain growth were observed. The evolved heat signal was quantitatively attributed to the respective microstructural evolution in terms of interfacial area change, allowing determination of average surface and grain boundary energies for MgAl2O4 as 1.49 J m−2 and 0.57 J m−2, respectively. The data was then used to interpret the thermodynamics involved in density and grain growth during isothermal sintering of MgAl2O4.  相似文献   

18.
Effects of slow-cooling at high temperatures and annealing at intermediate temperatures on dielectric loss tangent of AlN ceramics were explored. Y2O3 was added as a sintering additive to AlN powders, and the powders were pressureless-sintered at 1900 °C for 2 h in a nitrogen flow atmosphere. In succession to the sintering, AlN samples were slow-cooled at a rate of 1 °C/min from 1900 to 1750 °C and/or annealed at 970 °C for 4 h. Al5Y3O12 was detected in the AlN ceramics obtained by the slow-cooling and AlYO3 was found in the ceramics cooled at a rate of 30 °C/min. AlN ceramics with a relative density of 0.986 were obtained by the slow-cooling method. On the other hand, very low tan δ values between 2.6 and 4.6 × 10−4 were obtained when the AlN ceramics were annealed at 970 °C for 4 h.  相似文献   

19.
《Ceramics International》2017,43(17):14891-14896
The effects of LiF on the synthesis and reactive sintering of polycrystalline gahnite (zinc aluminate spinel, ZnAl2O4) were studied using XRD, high-temperature simultaneous thermal analysis and a spark plasma sintering (SPS) apparatus. It was demonstrated that the LiF reduces the onset of synthesis by about 200 °C and plays an important role in the densification process. SPS consolidation of a LiF-doped ZnO-Al2O3 mixture under an applied pressure of 150 MPa and at a sintering temperature of 1100 °C for 20 min generated fully dense gahnite with adequate transparency and mechanical properties.  相似文献   

20.
Al2O3-YAG (50 vol.%) nanocomposite powders were prepared by wet-chemical synthesis and characterized by DTA-TG, XRD and TEM analyses. Amorphous powders were pre-heated at different temperatures (namely 600 °C, 800 °C, 900 °C and 1215 °C) and the influence of this thermal treatment on sintering behavior, final microstructure and density was investigated. The best performing sample was that pre-calcined at 900 °C, which yields dense bodies with a micronic/slightly sub-micronic microstructure after sintering at 1600 °C. A pre-treatment step to induce controlled crystallisation of the amorphous powder as well as a fast sintering procedure for green compacts, were also performed as a comparison.Finally, the previously stated thermal pre-treatment of the amorphous product was coupled to an extensive mechanical activation performed by wet planetary/ball milling. This procedure was highly effective in lowering the densification temperature, so that fully dense Al2O3-YAG composites, with a mean grain size smaller than 200 nm, were obtained by sintering in the temperature range 1370–1420 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号