首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Hydroxyapatite/titania nanocomposite coatings were electrophoretically deposited from ethanolic suspensions of titania and fiber shaped hydroxyapatite (FHA) nanoparticles. Triethanolamine (TEA) was used to enhance the colloidal stability of particles in suspensions. Electrophoretic deposition (EPD) was performed using the suspensions with different concentrations (wt%) of titania/FHA particles. EPD rate decreased more rapidly with time for suspensions with higher wt% of FHA due to the higher voltage drop over the deposits shaped from them. Stacking of long FHA particles on the substrate during EPD resulted in the formation of coarse pores in the deposits. It was found that titania nanoparticles can more efficiently infiltrate through and fill the pores in TEA containing suspensions due to the stronger electrostatic repulsion force between pore walls (FHA) and titania nanoparticles in them. The coatings deposited from the suspensions with 50 wt% of FHA or more did not crack during drying due to the significant reinforcement action provided by high wt% of FHA in them. Nanocomposite coatings deposited from TEA containing (2 mL/L) suspensions with 50 and 75 wt% of FHA had the best corrosion resistance in simulated body fluid (SBF) solution due to their crack-free microstructure and efficiently filled pores.  相似文献   

2.
《Ceramics International》2017,43(5):4663-4669
Three component suspensions of hydroxyapatite (HA), chitosan and CNTs were prepared in ethanol base solution (15 vol% water and 0.05 vol% acetic acid). The adsorption of HA nanoparticles on CNTs was investigated by FTIR and SEM analysis. It was found that HA nanoparticles are adsorbed on CNTs via chemical bonding between -NH2 groups of chitosan (adsorbed on their surface) and -COOH groups of CNTs. Current density as well as kinetics of EPD was studied at 60 V. It was found that current density increases or remains nearly constant during EPD due to the rise in water electrolysis as deposit grows on the substrate. Deposition weight against EPD time showed a linear trend due to the absence of any voltage drop over the deposit during EPD. The incorporation of chitosan and CNTs in the microstructure of coatings was confirmed by TG/DTA and SEM analysis. CNTs exhibited high efficiency in reinforcing the microstructure of coatings and preventing from their cracking. CNTs incorporation in the coatings improved their mechanical properties (adhesion strength, hardness and elastic modulus) and corrosion resistance.  相似文献   

3.
The role of particle concentration in electrophoretic deposition (EPD) was investigated with two different suspension systems. The first system consisted of positively charged TiO2 nanoparticles dispersed in isopropanol with 1 vol% water. The second system consisted of negatively charged polystyrene (PS) microbeads dispersed in isopropanol. Constant voltage EPD was performed using suspensions with variable particle concentration (0.013–0.43 vol% TiO2 and 0.06–11.4 vol% PS). Threshold concentration values were identified for both systems after EPD at 100 V (250 V cm?1) for 1 min. Below these values the deposited mass deviated from the trend dictated by Hamaker's equation. Higher applied voltages and longer deposition times were tested and the results suggested that the threshold concentration did not depend on those parameters. A phenomenological model of particle deposition was proposed, which accounts for the local electrochemical conditions close to the substrate in relation to particle size.  相似文献   

4.
Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 ± 0.39 MPa (pure HA) to 2.75 ± 0.38 MPa (2 wt.% GO/HA) and 3.3 ± 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80–90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate.  相似文献   

5.
Electrophoretic deposition (EPD) has gained increasing interest for the deposition of materials such as TiO2, carbon nanotubes and trioctylphosphine oxide (TOPO)-capped CdSe nanoparticles. In this study, a mercaptoundecanoic acid (MUA) CdSe nanoparticle film was formed by electrophoretic deposition. A colloidal suspension of TOPO-capped CdSe nanoparticles was prepared by the hot injection method, followed by ligand exchange to produce MUA-capped CdSe nanoparticles. As-prepared MUA-capped CdSe nanoparticles were washed using ethyl acetate and ethyl ether. Then, the washed nanoparticles were resuspended in ethanol and immediately used for EPD. A CdSe nanoparticle film measuring 2.75 µm in thickness was deposited at an applied voltage of 5 V and deposition time of 5 min.  相似文献   

6.
The suspensions of titania nanoparticles in different alcohols (methanol, ethanol and butanol) were prepared using triethanolamine (TEA) as a dispersant. The optimum concentration of TEA was 16.67, 8 and 0.33 mL/L in methanol, ethanol and butanol, respectively. Two component suspensions of titania (20 g/L) and carbon nanotubes (CNTs) (0.1, 0.2, 0.5 and 1 g/L) were prepared in different alcohols without and with optimum concentration of TEA. The finer and positively charged titania nanoparticles were heterocoagulated on the surface of coarser and negatively charged CNTs and generated the titania–CNT composite particles with the net positive charge. In the presence of TEA, titania nanoparticles completely covered CNTs surface due to their higher positive surface charge. At same CNT concentration, the deposition rate was faster for suspensions with TEA additive due to the faster mobility of the composite particles. The photocatalysis efficiency of coatings for methylene blue degradation increased as CNTs were incorporated in their microstructure.  相似文献   

7.
Yttria stabilized zirconia (YSZ) coatings were produced from a YSZ suspension in acetylacetone (ACAC) using electrophoretic deposition (EPD) and then sintered with substrate constraint at 1200 and 1300 °C. Before EPD, the operational pH of the suspension was adjusted by addition of acetic acid or triethanolamine (TEA) base. The effect of suspension pH on the deposition of EPD coatings was studied with respect to the suspension stability, coating density and microstructure. Results showed that the zeta potential had a high positive value on both sides of the iso-electric point (IEP). This probably resulted from the adsorption of TEA, detected by Fourier transform infrared spectroscopy. Three alkalies with different molecular structures were compared and the effect of their molecule length on the interparticle repulsion was discussed. Based on this, particle interactions were estimated for different pH suspensions. The reduced particle coagulation increased the packing density of the EPD coatings from 38% at pH 7.4 to 53% at pH 8.4. Therefore, subsequent sintering of coatings was promoted. The sinterability was evaluated by micro-hardness and microstructure. After sintering at 1200 °C, coatings made in pH 8.4 suspensions obtained a hardness of 786 MPa and had fewer big pores than coatings fabricated in pH 7.4 suspensions that had a hardness of 457 MPa.  相似文献   

8.
The purpose of this paper is to present an up-to-date comprehensive overview of current research progress in the development of carbon nanotube (CNT)–ceramic nanocomposites by electrophoretic deposition (EPD). Micron-sized and nanoscale ceramic particles have been combined with CNTs, both multiwalled and single-walled, using EPD for a variety of functional, structural and biomedical applications. Systems reviewed include SiO2/CNT, TiO2/CNT, MnO2/CNT, Fe3O4/CNT, hydroxyapatite (HA)/CNT and bioactive glass/CNT. EPD has been shown to be a very convenient method to manipulate and arrange CNTs from well dispersed suspensions onto conductive substrates. CNT–ceramic composite layers of thickness in the range <1–50 μm have been produced. Sequential EPD of layered nanocomposites as well as electrophoretic co-deposition from diphasic suspensions have been investigated. A critical step for the success of EPD is the prior functionalization of CNTs, usually by their treatment in acid solutions, in order to create functional groups on CNT surfaces so that they can be dispersed uniformly in solvents, for example water or organic media. The preparation and characterisation of stable CNT and CNT/ceramic particle suspensions as well as relevant EPD mechanisms are discussed. Key processing stages, including functionalization of CNTs, tailoring zeta potential of CNTs and ceramic particles in suspension as well as specific EPD parameters, such as deposition voltage and time, are discussed in terms of their influence on the quality of the developed CNT/ceramic nanocomposites. The analysis of the literature confirms that EPD is the technique of choice for the development of complex CNT–ceramic nanocomposite layers and coatings of high structural homogeneity and reproducible properties. Potential and realised applications of the resulting CNT–ceramic composite coatings are highlighted, including fuel cell and supercapacitor electrodes, field emission devices, bioelectrodes, photocatalytic films, sensors as well as a wide range of functional, structural and bioactive coatings.  相似文献   

9.
Porous thick films of La0.6Sr0.4Co0.8Fe0.2O3?δ (LSCF) on Ce0.9Gd0.1O1.95 (CGO) substrates were prepared by the electrophoretic deposition (EPD) method. Organic suspensions of different compositions containing LSCF ceramic particles were investigated with the aim to determine the optimal composition of the suspension and EPD conditions. Stainless steel substrates were used in order to determine the optimal parameters for the EPD process. The best results were achieved with solutions containing acetylacetone, iodine and starch. The EPD conditions leading to uniform LSCF films were: applied voltage 20 V and deposition time 120 s, with the electrodes separated 1.5 cm. EPD was also demonstrated to be a simple and useful method for making porous LSCF cathodes on CGO substrates. It was shown that the microstructure of the films can be controlled by changing the applied voltage, deposition time and concentration of additives in suspension.  相似文献   

10.
Yttria stabilized zirconia/alumina (YSZ/Al2O3) composite coatings were prepared from electrophoretic deposition (EPD), followed by sintering. The constrained sintering of the coatings on metal substrates was characterized with microstructure examination using electron microscopy, mechanical properties examination using nanoindentation, and residual stress measurement using Cr3+ fluorescence spectroscopy. The microstructure close to the coating/substrate interface is more porous than that near the surface of the EPD coatings due to the deposition process and the constrained sintering of the coatings. The sintering of the YSZ/Al2O3 composite coating took up to 200 h at 1250 °C to achieve the highest density due to the constraint of the substrate. When the coating was sintered at 1000 °C after sintering at 1250 °C for less than 100 h, the compressive stress was generated due to thermal mismatch between the coating and metal substrate, leading to further densification at 1000 °C because of the ‘hot pressing’ effect. The relative densities estimated based on the residual stress measurements are close to the densities measured by the Archimedes method, which excludes an open porosity effect. The densities estimated from the hardness and the modulus measurements are lower than those from the residual stress measurement and the Archimedes method, because it takes account of the open porosity.  相似文献   

11.
Isopropanolic Suspensions of HA nanoparticles (20 g/L) plus various concentrations of carbon nanotubes (CNTs) were prepared using Tris and triethanolamine as dispersant. The positively charged HA nanoparticles were heterocoagulated on the negatively charged CNTs and generated the HA‐CNT composite particles with net positive surface charge. The heterocoagulation was more intensive in dispersant‐containing suspensions (DCS) due to the higher zeta potential of HA nanoparticles in them. HA‐CNTs particles can be rotated and aligned parallel to electric field as a result of torque exerted on them due to the generation of a dipole moment in CNTs during electrophoretic deposition (EPD). The mobility of HA‐CNTs particles aligned parallel to electric field is ≈50% higher than that of HA nanoparticles leading to the faster EPD from DCS when CNTs are added into them. CNTs more efficiently reinforced the coatings deposited from DCS due to the stronger electrostatic bonding between CNTs and HA nanoparticles in them.  相似文献   

12.
Electrophoretic deposition (EPD) was used to fabricate alumina matrix composites with high volume fraction of woven fibre mat (Nextel™ 720) reinforcement in a multilayer structure. Colloidal suspensions of Al2O3 nanoparticles in ethanol medium with addition of 4-hydrobezoic acid were used for EPD. Two different techniques were developed for fabrication of Al2O3 matrix/Nextel™ 720 fibre composites. The first method is a combination of standard EPD of single fibre mats with a subsequent lamination procedure to fabricate the multilayered composite. The second method involves the simultaneous infiltration of several (three or more) Nextel™ 720 fibre mats by EPD in a tailor-made cell. The composites exhibit a homogeneous matrix microstructure, characterised by a very high particle packing density and relatively low porosity after sintering at 1300 °C. The EPD cell allows production of relatively large bodies (10 cm diameter). By combination of the multilayer EPD infiltration and lamination processes developed here, thick ceramic matrix composite components (>10 mm thickness) can be fabricated, which opens the possibility of greater industrial application of the materials.  相似文献   

13.
《Ceramics International》2017,43(15):11820-11829
Titanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings.The objective of the present research was to elaborate the technology of electrophoretic deposition (EPD) of nanohydroxyapatite (nanoHAp) coatings decorated with silver nanoparticles (nanoAg) and to investigate the mechanical and chemical properties of these coatings as determined by EPD voltage and the presence of nanoAg. The deposition of nanoHAp was carried out at two voltage values, 15 and 30 V. The decoration of nanoHAp coatings with nanoAg was carried out using the EPD process at a voltage value of 60 V and a deposition time of 5 min. The thickness of the undecorated coatings was found to be 2.16 and 5.14 µm for applied EPD voltages of 15- and 30-V, respectively. The release rate of silver nanoparticles into an artificial saliva solution increased with exposure time and EPD voltage. The corrosion current, between 1 and 10 nA/cm2, was significantly higher for undecorated nanoHAp coatings and close to that of the substrate for decorated nanoHAp coatings. The hardness of the undecorated nanoHAp coatings obtained at 15 and 30 V of EPD voltage attained 0.2245±0.036 and 0.0661±0.008 GPa, respectively. Resistance to nanoscratching was higher for thicker coatings. The wettability angle was lower for coatings decorated with nanoAg.  相似文献   

14.
Calcium phosphate coatings produced on the surface of Ti6Al4V by plasma electrolytic oxidation (PEO) using different concentrations of hydroxyapatite (HA) in a 0.12 M Na3PO4 (NAP) electrolyte solution was investigated. It was found that the amount of calcium phosphate particles infiltrated into the coating layer as well as the thickness and the surface roughness of the coating increased with increasing HA concentration. The porosity of the ceramic coatings indicated an inverse relationship with the concentration of HA particles dispersed in the NAP solution. The result also demonstrates that higher scratch adhesive strength was achieved using 1.5 g/L HA solution, producing a critical load of 2099 mN, while 0 g/L HA only produced a critical load of 1247 mN. The adhesion becomes independent of thickness when the concentration of HA exceeds 1.5 g/L. The failure of the coating was characterized by large periodic hemispherical chipping, while intermittent delamination was noticed with the coating embedded with HA particles. This study demonstrate the viability of using PEO to produce a thin layer of HA ceramic coating on Ti6Al4V suitable for biomedical applications.  相似文献   

15.
《Ceramics International》2016,42(6):6906-6913
In this study, zinc oxide nanoparticles were synthesized by the hydrothermal microwave-assisted method, followed by its deposition using electrophoretic deposition (EPD) method. An investigation of the characteristics of the synthesized nanoparticles was carried out using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The morphology and size distribution of the nanoparticles were examined by the images obtained from Transmission Electron Microscope (TEM). The in-situ variations of mass and current density were investigated during the EPD. The effect of different parameters such as the solvent type at various voltages (20 and 40 V) was investigated on EPD kinetics. By increasing the voltage from 20 to 40 V in the methanol, the mass of the deposited film was increased up to about 38%. Similarly, in the ethanol, an increase equal to 39% was observed. The morphology and porosity of deposited nanoparticles were studied by analyzing the images of the Scanning Electron Microscope (SEM). It was observed that the porosity of the film in the ethanol was more than the methanol, at similar potentials. The increase in porosity at the voltage of 20 V was almost 3.1% and at 40 V, it was approximately 4.4% with respect to methanol. Initial current densities in methanol at 20 and 40 V were about 18 and 29% more than ethanol, respectively.  相似文献   

16.
《Ceramics International》2017,43(9):7321-7328
Yttria-Stabilized Zirconia (YSZ) is the most common material for thermal barrier coatings. Suspensions of 3 mol% YSZ nanoparticles in acetone medium have been prepared in presence of different amounts of iodine as dispersant. Size distribution of particles in the suspensions and zeta potential were measured as a function of dispersant concentration. Adding 1.2 g/l iodine was found to be effective for the dispersion of YSZ nanoparticles in acetone. The stability of YSZ suspension in acetone increased with iodine content increasing until reached 1.2 g/l. Mean diameter of particles and zeta potential of the YSZ suspension in acetone were 912 nm and 2.4 mV respectively, and with addition of 1.2 g/l iodine shifted to 111.6 nm and 50.2 mV respectively. Electrophoretic deposition (EPD) process has been carried out from this suspension at different applied voltages and deposition times. A uniform green coating was obtained at voltage of 6 V and deposition time of 2 min the thickness of the green coating is measured about 25 µm.  相似文献   

17.
Electrophoretic deposition (EPD) is a simple, rapid, and low cost method for forming dense lead zirconate titanate (PZT) films down to 5 μm from particulate precursors. The three main steps of this process are: (1) formation of a charged suspension of the starting PZT powder; (2) deposition of the powder particles on an electrode under the influence of a dc electric field; and (3) fluxing and constrained sintering of the resulting particulate deposit at 900°C to form a dense continuous film. A 10 μm film formed using this process exhibited a polarization hysteresis equivalent to that of a bulk sample formed from the same starting powder, with a remnant polarization of 33 μC cm−2.  相似文献   

18.
Titania nanostructured coatings with different porous patterns were fabricated by electrophoretic deposition (EPD) in isopropanolic suspension including different concentrations of carbon active (CA) or carbon black (CB) particles as the porogen additives. Finer and negatively charged CA particles were electrostatically adsorbed on the coarser and positively charged titania particles and formed CA-titania particles. While, finer and positively charged titania particles were electrostatically adsorbed on the coarser and negatively charged CB particles to form titania-CB particles. Both CA-titania and titania-CB particles had the net positive surface charge and so cathodic EPD was applicable. EPD was carried out at optimized conditions of 60?V and 10?s. Thermogravimetry (TG) analysis showed that CA and CB burn out between 450?°C and 600?°C. The higher the carbon content in the suspension the higher was their content in the coating. The coatings were characterized by SEM, AFM, adhesion strength and bioactivity tests. Even coatings with interconnected fine pores and low roughnesses were obtained after the heat treatment of CA-titania coatings. While, rough coatings with coarse and isolated pores were obtained after the heat treatment of titania-CB coatings. The porosity of coating increased as the carbon content increased in the suspension. The hydroxyapatite layer grew on the coatings after their soaking in simulated body fluid for 1week at 37.5?±?1.5?°C.  相似文献   

19.
Fabrication of titania dense layers by electrophoresis in aqueous media has been studied according to the suspension formulation. Stable titania suspensions with negatively charged particles are obtained by adding either the strong basis (C2H5)4NOH, or the Tiron molecule or a salt of polymethacrylic acid. To prevent water electrolysis at the anode which is the collecting electrode, ethanol is added as cosolvent. A concentration of 10 vol% is sufficient to avoid gaseous emission at the anode and to keep a stable suspension suitable for electrophoretic deposition (EPD). The parameters influencing the deposit kinetic of particles are studied, such as the concentration of ethanol, of solid and of dispersant, and the current intensity applied. Finally, it is possible to fabricate layers with a relative density of 60% with a very narrow size distribution of pores.  相似文献   

20.
Thermal spraying using liquid feedstock has emerged as a promising technology for the deposition of finely structured ceramic coatings. In order to provide a comparative assessment of the deposition mechanisms occurring when spraying suspension or solution feedstock, suspensions of 300 nm-sized ZrO2–4.5 mol.% Y2O3 particles dispersed in water and in ethanol and solutions of zirconium and yttrium salts, corresponding to ZrO2–4.5 mol.% Y2O3 and ZrO2–8 mol.% Y2O3 stoichiometries, were processed by plasma spraying using different parameter settings. In-flight diagnostics of sprayed droplets, together with the morphological, microstructural and phase analysis of individual lamellae collected onto polished substrates, performed by SEM, FIB, AFM and micro-Raman spectroscopy, led to the identification of deposition mechanisms, which were subsequently verified through the characterisation of complete coating layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号