首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
A novel constant energy release rate load-jig, capable of applying loads in the full range of mode mixes from pure mode I to pure mode II, was developed for studying creep crack growth in structural adhesive joints. Since the load-jig applies only pure bending moments to uniform double cantilever beam (DCB) specimens, the expressions for the energy release rate and mode ratio are both simple and accurate. The new load-jig was used to study mixed-mode creep crack growth in DCB specimens which had either an intact fillet or a steady-state failure zone. Both a rubber-toughened and a mineral-filled epoxy adhesive were tested at room temperature, which is far below the glass transition temperature for either structural adhesive. In all cases, crack speeds were observed to decelerate, indicating that the adhesive were self-toughening over time. In addition, crack growth was observed to propagate by the initiation and coalescence of microcracks, rather than by the continuous advancement of a crack tip.  相似文献   

2.
This article investigates the prediction of the crack growth angle of an existing internal crack under mixed mode loading at the crack tip for an unfilled ethylene propylene diene terpolymer rubber (EPDM). For the realization of mixed mode loading, the cracks of the uniaxial loaded specimens were oriented with different angles to the loading direction. The energy density factor was used as a potential criterion for determining the crack growth angle. The determination of the strain energy density factor was carried out simulatively in Abaqus. The second-order Ogden model was used to describe the rubber-like material behavior. The relative local minimum of the strain energy density factor provides the possible growth angle. The experimental investigations show that the initial cracks grow orthogonally to the loading direction for the different crack orientation angles. For the crack orientation angle parallel to the load direction, the crack growth was observed because the strong stretching of the specimen caused strong necking in the crack region. The crack growth for the remaining crack orientation angles were induced due to shear loading at the crack tip. The predictive angle of different crack orientation angles shows very good accordance to the measured crack growth angles.  相似文献   

3.
In this study we correlate parameters describing molecular structure (molar mass distribution, short chain branching content, intermolecular heterogeneity) of different ethylene-hexene Cr-catalyzed copolymers, with slow crack growth and rapid crack propagation resistances, respectively measured with Bent Strip and Charpy tests. The PTREF technique, coupled with classical techniques, was used. Two new indices were proposed to correlate mechanical properties and molecular structure. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 916–928, 2001  相似文献   

4.
建立了MVR升膜循环蒸发器管内沸腾蒸发传热传质三维物理模型,采用标准k-ε湍流模型、多相流混合模型和C语言编写气液两相之间质量传递和能量传递的自定义函数,对光管和波纹管内氨基酸废水溶液的沸腾蒸发传热传质特性进行了数值模拟研究,得到了光管和波纹管内湍流强度、温度场、相变含气率和平均沸腾传热系数的分布规律,比较了光管和波纹管内流体的流动和传热传质特性,分析了不同管壁加热温度和进口流速对沸腾传热性能的影响。结果表明,采用MVR升膜循环蒸发器可以实现氨基酸废水溶液的低温负压沸腾蒸发操作,传热管的结构对流体的流动和传热传质有影响,波纹管与光管相比可使平均沸腾传热系数提高2.2倍。  相似文献   

5.
The simple empirical relation is developed to estimate the glass cover temperature for known values of water and ambient temperatures in basin type hybrid (PV/T) active solar still. The empirical relation developed is based on outdoor experimental results of water and ambient temperature in the range of 14 °C to 92 °C, and 14 °C to 36 °C respectively. The results obtained for glass cover temperature using proposed relation are validated with the experimental as well as using a numerical results (obtained by numerical solution of heat balance equation) of solar still. The proposed glass cover temperature is obtained with a maximum relative error of 1.12% compared to the value obtained through a numerical solution. The maximum relative error in evaporative mode of energy transfers from water surface is obtained as 1.2%.  相似文献   

6.
大型电镀企业在节能减排方面能够很好地做到达标排放,但是中小电镀企业却一直负面地影响着整个电镀行业.本文针对现有政策之下,中小电镀企业与节能减排的关系,分析了中小电镀企业清洁生产实施中存在的问题,提出了促进中小电镀企业实现节能减排的政策建议,如给予中小企业特别的优惠等.  相似文献   

7.
The phase behaviour of poly(N-vinyl pyrrolidone)-poly(ethylene glycol) (PVP-PEG) blends has been examined in the entire composition range using Temperature Modulated Differential Scanning Calorimetry (TM-DSC) and conventional DSC techniques. Despite the unlimited solubility of PVP in oligomers of ethylene glycol, the PVP-PEG system under consideration demonstrates two distinct and mutually consistent glass transition temperatures (Tg) within a certain concentration region. The dissolution of PVP in oligomeric PEG has been shown earlier (by FTIR spectroscopy) to be due to hydrogen bonding between carbonyl groups in PVP repeat units and complementary hydroxyl end-groups of PEG chains. Forming two H-bonds through both terminal OH-groups, PEG acts as a reversible crosslinker of PVP macromolecules. To characterise the hydrogen bonded complex formation between PVP (Mw=106) and PEG (Mw=400) we employed an approach described in the first two papers of this series that is based on the modified Fox equation. We evaluated the fraction of crosslinked PVP units and PEG chains participating to the complex formation, the H-bonded network density, the equilibrium constant of complex formation, etc. Based on the established molecular details of self-organisation in PVP-PEG solutions, we propose a three-stage mechanism of PVP-PEG H-bonded complex formation/breakdown with increase of PEG content. The two observed Tgs are assigned to a coexisting PVP-PEG network (formed via multiple hydrogen bonding between a PEG and PVP) and a homogeneous PVP-PEG blend (involving a single hydrogen bond formation only). Based on the strong influence of coexisting regions on each other and the absence of signs of phase separation (evidenced by Optical Wedge Microinterferometry) we conclude that the PVP-PEG blend is fully miscible on a molecular scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号