首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
《Ceramics International》2015,41(4):5348-5354
β-Si3N4 seed crystals were synthesized by sintering (α+β)-Si3N4 powders with Y2O3+MgO additives at 1800 °C. Full α- to β-phase transformation was achievable at 1800 °C for 1 h. The pre-existing β-Si3N4 particles acted as nuclei during a sintering process. The length and mean aspect ratio of β-Si3N4 seed grains could be tailored by careful control of α/β-Si3N4 ratio, which resulted in various nuclei and driving force. The sample A95B5 with 5% β-nuclei shows a bimodal size distribution containing large amount of abnormal elongated β-Si3N4 grains with remarkable large diameter. With increasing the β-phase content from 5 wt% to 100 wt%, the average diameter and aspect ratio of the β-Si3N4 single crystals decreased from 1.43 µm to 0.92 µm and from 4.36 to 2.79, respectively.  相似文献   

2.
The dispersing behaviour of silicon, silicon carbide and their mixtures in aqueous media were monitored by particle size, sedimentation, viscosity and zeta potential analyses as a function of pH of the slurry. The pH values for optimum dispersion were found to be 4 and 8 for silicon, 10 for SiC and 9 for Si+SiC mixtures. Optimum slips of Si+SiC mixtures were slip cast to obtain green compacts which were nitrided once at 1450°C for 2 or 4 h or successively and cumulatively for 8 (2+6) and 10 (4+6) h in a resistively heated graphite furnace. The binding phases in the nitrided products were found to be fibrous/needle like α-Si3N4, flaky grains of β-Si3N4 and Si2ON2. The products containing 19–47% of silicon nitride as bond/matrix possessed flexural strength (three-point bending) values of 50–85 MPa. ©  相似文献   

3.
《Ceramics International》2016,42(10):11593-11597
A new gelling system based on the polymerization of hydantion epoxy resin and 3,3′-Diaminodipropylamine (DPTA) was successfully developed for fabricating silicon nitride (Si3N4) ceramics. The effects of pH value, the dispersant content, solid volume fraction and hydantion epoxy resin amount on the rheological properties of the Si3N4 slurries were investigated. The relative density of green body obtained from the solid loading of 52 vol% Si3N4 slurry reached up to 62.7%. As the concentration of hydantion epoxy resin increased from 5 wt% to 20 wt%, the flexural strength of Si3N4 green body enhanced from 5.3 MPa to 31.6 MPa. After pressureless sintering at 1780 °C for 80 min, the sintered samples exhibited the unique interlocking microstructure of elongated β-Si3N4 grains, which was beneficial to improve the mechanical properties of Si3N4 ceramics. The relative density, flexural strength and fracture toughness of Si3N4 ceramics reached 97.8%, 687 MPa and 6.5 MPa m1/2, respectively.  相似文献   

4.
《Ceramics International》2017,43(14):10791-10798
Silicon nitride (Si3N4) is of interest because of its high inherent fracture toughness due to interlocking and elongated β-Si3N4 grains, but it is difficult to economically produce into near-net and complex shapes. In this study, the difficulties were overcome with the use of a novel injection molding process where highly loaded (up to 45 vol%) suspensions were loaded into a syringe and injected at a controlled rate into a mold of a desired shape. The suspensions have carefully tailored yield-pseudoplastic rheology such that they can be injection molded at room temperature and low pressures (<150 kPa). Four suspensions were studied; two different commercially available concrete water-reducing admixtures (WRAs) were used as dispersants with and without a polymer binder (Polyvinylprolidone, PVP) added for rheological modification and improved green body strength. Test bars formed via this process were sintered to high densities (up to 97% TD) without the use of external pressure, and had complete conversion to the desirable β-Si3N4 phase with high flexural strengths up to 700 MPa. The specimen sets with the smallest average pore size on the fracture surface (77 µm) had the highest average flexural strengths of 573 MPa. The hardness of all specimens was approximately 16 GPa. The ease and low cost of processing of these water-based suspensions, and the robust mechanical properties reported, demonstrate this as a viable process for the economical and environmentally friendly production of Si3N4 parts.  相似文献   

5.
《Ceramics International》2017,43(18):16424-16429
Novel tempered resin bonded ferro-silicon nitride-corundum refractories containing 0 wt%, 15 wt% and 25 wt% ferro-silicon nitride were prepared respectively. Creep tests were performed under a load of 0.2 MPa at a temperature of 1300 °C for 50 h in air. The results showed that creep performance was significantly improved by the addition of ferro-silicon nitride. Ferro-silicon nitride-corundum containing 15 wt% ferro-silicon nitride initially presented a steady-state stage and was able to remain stable from the beginning of the holding time until 50 h of creep testing. All the specimens exhibited cold crushing strength more than 100 MPa both before and after creep testing. Phase composition and microstructure were analyzed following the creep experiments. The results showed that Si2N2O and O’-sialon crystals formed in situ during creep testing, in addition to the conversion of α-Si3N4 to β-Si3N4. Liquid Fe3Si from the ferro-silicon nitride component accelerated the formation of the O’-sialon and prolonged the growth of β-Si3N4, which improved the creep performance significantly. Fe3Si liquid migrated into the pores, and some Fe3Si coexisted with residual carbon from the resin, which filled a part of pores and protected the specimens from severe oxidation.  相似文献   

6.
The effects of β-Si3N4 whiskers on the thermal conductivity of low-temperature sintered borosilicate glass–AlN composites were systematically investigated. The thermal conductivity of borosilicate glass–AlN ceramic composite was increased from 11.9 to 18.8 W/m K by incorporating 14 vol% β-Si3N4 whiskers, and high flexural strength up to 226 MPa were achieved along with low relative dielectric constant of 6.5 and dielectric loss of 0.16% at 1 MHz. Microstructure characterization and percolation model analysis indicated that thermal percolation network formation in the ceramic composites led to the high thermal conductivity. The crystallization of the borosilicate microcrystal glass also contributed to the enhancement of thermal conductivity. Such ceramic composites with low sintering temperature and high thermal conductivity might be a promising material for electronic packaging applications.  相似文献   

7.
The influence of sintering parameters at an early stage of densification on the evolution of a bimodal microstructure in Si3N4 ceramics was investigated. Commonly two different methods are pursued to design a bimodal Si3N4 microstructure: (i) annealing at a later sintering stage (T > 1850 °C) initiating β-Si3N4 grain growth via Ostwald ripening and (ii) seeding with β-Si3N4 nuclei, which abnormally grow during the liquid-phase sintering process. In this study, a third and novel method to design Si3N4 microstructures by affecting intrinsic nucleation phenomena at an early sintering stage is presented. In order to study the influence of sintering parameters on β-Si3N4 nuclei formation during the early stage of densification, temperature and pressure were systematically changed. Starting from identical green bodies (identical processing and doping), the variation of the sintering parameters affected intrinsic β-Si3N4 nucleation. This procedure allows variation in the fineness of the matrix as well as in the number and dimension of the large elongated β-Si3N4 grains embedded in the matrix. Since identical green bodies are used as starting material, the resulting microstructure can easily be tailored toward corresponding application needs.  相似文献   

8.
《Ceramics International》2016,42(12):13497-13506
Si3N4/(W, Ti)C graded nano-composite ceramic tool materials with different thickness ratios and number of layers were fabricated by hot pressing technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and the microstructure and indention cracks were observed. The experiment results showed that the five-layer graded nano-composites with a thickness ratio of 0.2, which were sintered under a pressure of 30 MPa at 1700 °C in vacuum condition for 45 min, had the optimum comprehensive mechanical properties with a flexural strength of 1080.3 MPa, a hardness of 17.64 GPa, and a fracture toughness of 10.87 MPa·m1/2. The formation of elongated β-Si3N4 grains contributes to the favorable mechanical properties. The graded structure can induce residual compressive stress in the surface layer and enhance the mechanical properties. The strengthening and toughening mechanisms are a synergistic effect of intergranular and transgranular fracture, crack bridging and deflection.  相似文献   

9.
《Ceramics International》2023,49(16):26331-26337
Silicon nitride (Si3N4) ceramics were prepared by gas-pressure sintering using Y2O3–MgSiN2 as a sintering additive. The densification behavior, phase transition, and microstructure evolution were investigated in detail, and the relevance between the microstructure and the performance (including thermal conductivity and mechanical properties) was further discussed. A significant change from a bimodal to a homogeneous microstructure and a decreased grain size occurred with increasing Y2O3–MgSiN2 content. When the small quantity of preformed β-Si3N4 nuclei grew preferentially and rapidly in a short time, an obvious bimodal microstructure was obtained in the sample with 4 mol% and 6 mol% Y2O3–MgSiN2. When more β-Si3N4 nuclei grew at a relatively rapid rate, the sample with 8 mol% Y2O3–MgSiN2 showed a microstructure consisting of numerous abnormally grown β-Si3N4 grains and small grains. When more β-Si3N4 nuclei grew simultaneously and slowly, there was a homogeneous microstructure and smaller grains in the sample containing 10 mol% Y2O3–MgSiN2. Benefitting from the completely dense, significant bimodal microstructure, low grain boundary phase, and excellent Si3N4–Si3N4 contiguity, the sample containing 6 mol% Y2O3–MgSiN2 exhibited great comprehensive performance, with a maximum thermal conductivity and fracture toughness of 84.1 W/(m⋅K) and 8.97 MPa m1/2, as well as a flexural strength of 880.2 MPa.  相似文献   

10.
Sintered reaction-bonded silicon nitride (SRBSN) with improved thermal conductivity was achieved after the green compact of submicron Si powder containing 4.22 wt% impurity oxygen and Y2O3-MgO additives was nitrided at 1400 °C for 6 h and then post-sintered at 1900 °C for 12 h using a BN/graphite powder bed. During nitridation, the BN/10 wt% C powder bed altered the chemistry of secondary phase by promoting the removal of SiO2, which led to the formation of larger, purer and more elongated Si3N4 grains in RBSN sample. Moreover, it also enhanced the elimination of SiO2 and residual Y2Si3O3N4 secondary phase during post-sintering, and thus induced larger elongated grains, decreased lattice oxygen content and increased Si3N4-Si3N4 contiguity in final SRBSN product. These characteristics enabled SRBSN to obtain significant increase (∼40.7%) in thermal conductivity from 86 to 121 W  m−1  K−1 without obvious decrease in electrical resistivity after the use of BN/graphite instead of BN as powder bed.  相似文献   

11.
Large amounts of waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of single crystal silicon ingots. Waste SiC sludge was purified by washing it with organic solvent and purified SiC powder was used to fabricate the continuously porous SiC–Si3N4 composites, using an extrusion process, in which carbon, 6 wt% Y2O3 + 2 wt% Al2O3 and ethylene vinyl acetate were added as a pore-forming agent, sintering additives and binder, respectively. In the burning-out process, the binder and carbon were fully removed and continuously porous SiC–Si3N4 composites were successfully fabricated. The green bodies containing waste SiC, Si powder and sintering additives were nitrided at 1400 °C in a flowing N2 + 10% H2 gas mixture. The continuously porous composites contained SiC, α-Si3N4, β-Si3N4 and few Fe phases. The pore size of the second passed and third passed SiC–Si3N4 composites was 260 μm and 35 μm in diameter, respectively. The values of bending strength and hardness in the second passed and third passed samples were 62.97 MPa, 388 Hv and 77.82 MPa, 423 Hv, respectively.  相似文献   

12.
Many space systems such as satellite mirrors and their supporting structures require to be made from very low-thermal expansion materials combining both high hydrostability and relatively high mechanical properties. In this study, we have applied the “composite concept” in order to explore the possibility of fabricating near zero thermal expansion silicon nitride based ceramics. Consequently, a negative thermal expansion material belonged to the lithium aluminosilicate family (LAS powder crystallized under de β-eucryptite structure) was introduced in an alpha-silicon nitride fine powder (5 and 20 vol% of LAS) and the resulting composite system was sintered by Spark Plasma Sintering (SPS) at 1400 and 1500 °C. In the case of 20 vol% LAS compositions, relatively well-densified ceramics (94.4% of the theoretical density) were produced without adding any further sintering additive. The addition of yttria and alumina oxides allowed enhancing the densification level up to 98.2% (20 vol% LAS compositions) or from 62.3% up to 96.7% of the theoretical density in 5 vol% LAS materials. Nevertheless, it was impossible to full consolidate silicon nitride/LAS composite ceramics at temperatures lower than the temperature at which β-eucryptite melts, even by using SPS technology. Moreover, because of the relatively low temperatures involved in SPS, the α to β-Si3N4 transformation was avoided, resulting in microstructures composed of fine equiaxed α-Si3N4 grains (<200 nm) and of a glassy phase. Even if the effect of having a very large negative thermal expansion material was lost during the sintering step (because of the β-eucryptite melting), ceramics containing only 20 vol% of LAS-based phase exhibited very interesting values as regards of mechanical properties (strength, hardness, toughness, and Young's modulus), thermal conductivity and thermal expansion coefficient. We discuss in this work why we are so interested in developing dense silicon nitride/LAS ceramics sintered without any further additive addition, even though β-eucryptite is melted during the process and the transformation to the β phase is avoided.  相似文献   

13.
Biomorphic porous silicon nitride Si3N4 ceramics have been produced by chemical vapor infiltration (CVI) of carbonized paper preforms with silicon, followed by gas–solid chemical reaction (R) of nitrogen with the infiltrated silicon. The paper was first carbonized in inert atmosphere to obtain a biocarbon (Cb) template. In a second step, silicon tetrachloride in excess of hydrogen was used to infiltrate silicon into the pores of the Cb template and to deposit silicon onto the Cb fibers. Finally, a gas–solid chemical reaction between nitrogen and infiltrated silicon in a temperature range of 1300–1450 °C took place in N2 or N2/H2 atmosphere to form reaction bonded silicon nitride (RBSN) ceramics. After nitridation, the samples consist mainly of α-Si3N4 phase for thermal treatment below the melting point of silicon (1410 °C) or of β-Si3N4 phase and β-Si3N4/SiC-mixed ceramics for treatment at temperatures above.The crystalline phases α- and β-Si3N4 were identified by X-ray diffraction (XRD) analysis and the microstructure of these samples was investigated by scanning electron microscopy (SEM). Energy-dispersive X-ray analysis (EDX) was used to detect the presence of silicon, nitrogen, carbon and oxygen, whereas Raman spectroscopy was applied to identify the presence of Si and SiC. Using thermal gravimetric analysis (TGA), residual carbon was determined. It was found, that addition of 10% H2 to the nitridation gas at temperatures near the melting point of silicon allows to increase the conversion of Si as well as to control the exothermic nitridation reaction obtaining the preferable needle-like microstructure.  相似文献   

14.
In this study, silicon nitride (Si3N4) ceramics added with and without boron nitride nanotubes (BNNTs) were fabricated by hot-pressing method. The influence of sintering temperature and BNNTs content on the microstructures and mechanical properties of Si3N4 ceramics were investigated. It was found that both flexural strength and fracture toughness of Si3N4 were improved when sintering temperature increases. Moreover, α-Si3N4 phase could transform into β-Si3N4 phase completely when sintering temperature rises to 1800 °C and above. BNNTs can enhance the fracture toughness of Si3N4 dramatically, which increases from 7.2 MPa m1/2 (no BNNTs) to 10.4 MPa m1/2 (0.8 wt% BNNTs). However, excessive addition of BNNTs would reduce the fracture toughness of Si3N4. Meanwhile, the flexural strength and relative density of Si3N4 decreased slightly when BNNTs were added. The related toughening mechanism was also discussed.  相似文献   

15.
C-axis textured Si3N4 with a high thermal conductivity of 176 W m−1 K−1 along the grain alignment direction was fabricated by slip casting raw α-Si3N4 powder seeded with near-equiaxed β-Si3N4 particles and Y2O3–MgSiN2 as sintering additives in a rotating strong magnetic field of 12 T, followed by gas pressure sintering at 1900 °C for 12 h at a nitrogen pressure of 1 MPa. The green material reached a relative density of 57%, with slip casting and the sintered material exhibited a relative density of 99% and a Lotgering orientation factor of 0.98. The morphology of the β-Si3N4 seeds had little effect on the texture development and thermal anisotropy of textured Si3N4. The technique developed provides highly conductive Si3N4 with conductivity to the thickness direction, which is a major advantage in practical use. The technique is also simple, inexpensive and effective for producing textured Si3N4 with high thermal conductivity of over 170 W m−1 K−1.  相似文献   

16.
《Ceramics International》2017,43(3):3435-3438
Graphene nanoribbons (GNRs) were obtained by unzipping multiwall carbon nanotubes (MWCNTs). Three different silicon nitride-carbon nanostructures were prepared by spark plasma sintering (SPS): ceramic composites that contained 1 wt% carbon nanofibers (CNFs), 1 wt% MWCNTs and 1 wt% GNRs respectively. The α to β-Si3N4 transformation ratio and thermal diffusivity of GNR/Si3N4 composites were higher than both CNF/Si3N4 composites and MWCNT/Si3N4 composites. Furthermore, the higher thermal diffusivities of GNR/Si3N4 composites can primarily be attributed to the higher number of elongate β-Si3N4 grains.  相似文献   

17.
《Ceramics International》2016,42(8):9921-9925
This study investigated the effect of SiO2 content in the Y2O3–Al2O3 additive system on the microstructure, mechanical and dielectric properties of silicon nitride (Si3N4) ceramics. The total sintering additive content was fixed at 8 wt% and the amount of SiO2 was varied from 0 to 7 wt%. The crystalline phases of the samples were determined by X-ray diffraction analysis. Complete α-to-β transformation of the Si3N4 occurred during sintering of all of the samples, which indicated that the phase transformation was unaffected by the SiO2 content. However, the microstructures showed that the aspect ratio of the β-Si3N4 grains decreased and the residual porosity increased with increasing SiO2 content. Additionally, the flexural strength and the dielectric constant decreased with increasing SiO2 content because of the residual porosity and the formation of the Si2N2O phase via a reaction of SiO2 with Si3N4.  相似文献   

18.
Thermal conductivity of Si3N4 containing large β-Si3N4 particles as seeds for grain growth was investigated. Seeds addition promotes growth of β-Si3N4 grains during sintering to develop the duplex microstructure. The thermal conductivity of the material sintered at 1900 °C improved up to 106 W m−1 K−1, although that of unseeded material was 77 Wm−1 K−1. Seeds addition leads to reduction of the sintering temperature with developing the duplex microstructure and with improving the thermal conductivity, which benefits in terms of production cost of Si3N4 ceramics with thermal conductivity. ©  相似文献   

19.
Porous Si3N4 ceramics were prepared via partial nitridation and self-propagating high temperature synthesis (SHS) process. Raw Si and additive Y2O3 were mixed and molded under 10 MPa into a compact, the compact was partial nitridation at 1300 °C to form a porous Si/Si3N4, and then it was buried in a Si/Si3N4 bed for SHS to obtain porous Si3N4 with rod-like β-Si3N4 morphology. The processing combined the advantages of the nitridation of Si and SHS with low cost, low shrinkage and time saving. Porous Si3N4 with a porosity of 47%, a strength of 143 MPa were obtained by this method.  相似文献   

20.
《Ceramics International》2017,43(2):2150-2154
Sintered Si3N4 ceramics were prepared from an ɑ-Si3N4/β-Si3N4 whiskers composite powder in-situ synthesized via carbothermal reduction at 1400–1550 °C in a nitrogen atmosphere from SiO2, C, Ni, and NaCl mixture. Reaction temperatures and holding time for the composite powder, and mechanical properties of sintered Si3N4 were investigated. In the synthesized composite powder, the in-situ β-Si3N4 whiskers displayed an aspect ratio of 20–40 and a diameter of 60–150 nm, which was mainly dependent on the synthesis temperature and holding time. The flexural strength, fracture toughness and hardness of the sintered Si3N4 material reached 794±136 MPa, 8.60±1.33 MPa m1/2 and 19.00±0.87 GPa, respectively. The in-situ synthesized β-Si3N4 whiskers played a role in toughening and strengthening by whiskers pulling out and crack deflection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号