首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(15):16584-16588
3.5 mol% Er2O3 stabilized ZrO2 (ErSZ) and Gd2Zr2O7 powders were produced by a chemical co-precipitation and calcination method, and ErSZ was used to toughen Gd2Zr2O7. The phase structure, toughness and thermal conductivities of ErSZ toughened Gd2Zr2O7 ceramics were investigated. When the ErSZ content was below 15 mol%, the compound consisted of pyrochlore phase, the ordering degree of which decreased with the increase of the ErSZ content. High ErSZ doping led to the formation of metastable tetragonal (t′) phase in the compound. The addition of ErSZ in Gd2Zr2O7 benefited its toughness, mainly attributable to the presence of t′ phase in the compound. With the increase of the ErSZ content in the compound, the thermal conductivity first decreased and then showed an upward tendency, and 10 mol% ErSZ toughened Gd2Zr2O7 exhibited the lowest thermal conductivity.  相似文献   

2.
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O7 (Gd2Zr2O7-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O7 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina- silicate (CMAS) corrosion tests were carried out at 1250 °C for 1–8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O7-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings.  相似文献   

3.
《Ceramics International》2022,48(7):9602-9609
The (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 (x = 0–0.5) high-entropy ceramics were successfully prepared by a solid state reaction method and their structures and thermo-physical properties were investigated. It was found that the high-entropy ceramics demonstrate pure pyrochlore phase with the composition of x = 0.1–0.5, while (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 shows the defective fluorite structure. The sintered high-entropy ceramics are dense and the grain boundaries are clean. The grain size of high-entropy ceramics increases with the Ti4+ content. The average thermal expansion coefficients of the (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics range from 10.65 × 10?6 K?1 to 10.84 × 10?6 K?1. Importantly, the substitution of Zr4+ with Ti4+ resulted in a remarkable decrease in thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics. It reduced from 1.66 W m?1 K?1 to 1.20 W m?1 K?1, which should be ascribed to the synergistic effects of mass disorder, size disorder, mixed configuration entropy value and rattlers.  相似文献   

4.
《Ceramics International》2017,43(10):7537-7542
The (La1−xYbx)2AlTaO7 ceramics were synthesized by pressureless sintering process at 1600 °C for 10 h in air. The crystal phase, microstructure and thermophysical properties were investigated. Results show that pure (La1−xYbx)2AlTaO7 cermics with single weberite structure are prepared successfully. Owing to the reduction of crystal-lattice tolerance-factor, the thermal conductivity of (La1−xYbx)2AlTaO7 (x>0) ceramics increases with increasing Yb2O3 fraction at identical temperatures, which is lower than that of La2AlTaO7. Due to the relatively high electro-negativity of Yb element, the addition of Yb2O3 increases the thermal expansion coefficient of (La1−xYbx)2AlTaO7 ceramics.  相似文献   

5.
In order to develop new candidate ceramic materials for thermal barrier coatings (La1?xGdx)2Ce2O7 ceramics were prepared by pressureless-sintering at 1600 °C for 10 h in air. The phase structure, micro-morphology and thermophysical properties of (La1?xGdx)2Ce2O7 ceramics were investigated, respectively. XRD results revealed that pure (La1?xGdx)2Ce2O7 ceramics with defect fluorite structure were synthesized and SEM showed that their microstructures were dense and no other phases existed among the particles. With the increasing temperature, their thermal expansion coefficients increased, while the thermal conductivities decreased. The thermophysical results indicated that thermal expansion coefficients of these ceramics were higher than that of 8YSZ, and their thermal conductivities were much lower than that of 8YSZ. The lower thermal conductivities of these ceramics were mainly attributed to more oxygen vacancies and substitution atoms. These results imply that the (La1?xGdx)2Ce2O7 ceramics can be explored as candidate materials for the ceramic layer in TBC system.  相似文献   

6.
《Ceramics International》2020,46(11):18888-18894
Ceramic materials for the thermal barrier coating (TBC) application of Gd2Zr2O7 (GZO), (Gd0.94Yb0.06)2Zr2O7 (GYb0.06Z), (Gd0.925Sc0.075)2Zr2O7 (GSc0.075Z), (Gd0.865Sc0.075Yb0.06)2Zr2O7 (GSc0.075Yb0.06Z), and (Gd0.8Sc0.1Yb0.1)2Zr2O7 (GSc0.1Yb0.1Z) were successfully synthesized by chemical co-precipitation. The effects of the doping of Sc2O3 and Yb2O3 on the phases, thermo-physical and mechanical properties of the ceramics were investigated. The results show that both Yb2O3 and Sc2O3 doping promoted the phase transition of GZO from pyrochlore to fluorite. All the Sc2O3-doped samples exhibited enhanced fracture toughness, as compared to the undoped sample. Furthermore, the GSc0.075Yb0.06Z sample revealed a thermal conductivity of ~0.8 W/mK at 1200 °C, which was nearly 30% lower than that of the undoped sample. The associated mechanisms related to the effects of the doping on the thermophysical and mechanical properties are discussed.  相似文献   

7.
To increase operating temperature and improve performance of gas-turbine engines, it is urgently needed to develop new thermal barrier oxides with a lower thermal conductivity than 6–8 wt.% yttria-stabilized zirconia. (YbxSm1?x)2Zr2O7 (0  x  1.0) ceramics were synthesized by pressureless-sintered at 1700 °C for 10 h in air. The relative density, phase structure, morphology and thermal diffusivity coefficients of (YbxSm1?x)2Zr2O7 ceramics were investigated by the Archimedes method, X-ray diffraction, scanning electron microscopy and laser-flash method. Sm2Zr2O7 and (Yb0.1Sm0.9)2Zr2O7 ceramics exhibit a pyrochlore structure, while (YbxSm1?x)2Zr2O7 (0.3  x ≤1.0) ceramics have a defect fluorite-type structure. The thermal conductivities of (YbxSm1?x)2Zr2O7 ceramics first gradually decrease with increasing temperature, and then increase slightly above 800 °C due to the increased radiation contribution. YbSmZr2O7 ceramics have the lowest thermal conductivity over the entire temperature range, which is caused by the reduction of cation mean free path in ytterbium–samarium zirconate system.  相似文献   

8.
This paper compares the hot corrosion performance of yttria stabilized zirconia (YSZ), Gd2Zr2O7, and YSZ + Gd2Zr2O7 composite coatings in the presence of molten mixture of Na2SO4 + V2O5 at 1050 °C. These YSZ and rare earth zirconate coatings were prepared by atmospheric plasma spray (APS). Chemical interaction is found to be the major corrosive mechanism for the deterioration of these coatings. Characterizations using X-ray diffraction (XRD) and scanning electron microscope (SEM) indicate that in the case of YSZ, the reaction between NaVO3 and Y2O3 produces YVO4 and leads to the transformation of tetragonal ZrO2 to monoclinic ZrO2. For the Gd2Zr2O7 + YSZ composite coating, by the formation of GdVO4, the amount of YVO4 formed on the YSZ + Gd2Zr2O7 composite coating is significantly reduced. Molten salt also reacts with Gd2Zr2O7 to form GdVO4. Under a temperature of 1050 °C, Gd2Zr2O7 based coatings are more stable, both thermally and chemically, than YSZ, and exhibit a better hot corrosion resistance.  相似文献   

9.
Pyrochlore structured Gd2Zr2O7 and Nd2Zr2O7 are produced via complex precipitation processing. A suite of characterization techniques, including FTIR, Raman, X-ray and electron diffraction, TEM, SEM as well as nitrogen sorption are employed to investigate the structural and grain size evolution of the synthesized and calcined powder. Results show that Gd2Zr2O7 with the pyrochlore structure are produced after calcination at 1400 °C for 12 h while Nd2Zr2O7 has already formed the pyrochlore structure at 1200 °C. This method allows the formation of dense materials at relatively low temperature, with bulk densities over 92% of the theoretical values achieved after sintering at 1400 °C for 50 h. This unique aqueous synthetic method provides a simple pathway to produce pyrochlore lanthanide zirconate without using either organic solvent and/or mechanical milling procedures, making the synthesis protocol an attractive potential scale-up production of highly refractory ceramics.  相似文献   

10.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications.  相似文献   

11.
It is important to investigate the high-temperature mechanical properties and failure mechanisms of Gd2Zr2O7 ceramic materials for the development of novel thermal barrier coatings. Freestanding (Gd0.9Yb0.1)2Zr2O7 (GYbZ) coatings were prepared by supersonic plasma sprayed technique. A modified high-temperature in situ experimental system (up to 1500 °C) with the aid of digital image correlation technique was used to evaluate the fracture strength and flexural modulus of GYbZ coatings using three-point bending tests, and the fracture toughness was studied by single edge notched beam experiments. In addition, the extended finite element analysis was used to estimate the critical energy release rate of GYbZ coatings through the aforementioned experimental data. The effect of test temperature on the mechanical properties, cracking and fracture morphology of freestanding GYbZ coatings was discussed under bending loads. The results are useful for understanding high-temperature failure mechanisms of multilayered GYbZ thermal barrier coatings.  相似文献   

12.
《Ceramics International》2016,42(6):7360-7365
Y2O3 stabilized ZrO2 (YSZ) has been considered as the material of choice for thermal barrier coatings (TBCs), but it becomes unstable at high temperatures and its thermal conductivity needs to be further reduced. In this study, 1 mol% RE2O3 (RE=La, Nd, Gd, Yb) and 1 mol% Yb2O3 co-doped YSZ (1RE1Yb–YSZ) were fabricated to obtain improved phase stability and reduced thermal conductivity. For 1RE1Yb–YSZ ceramics, the phase stability of metastable tetragonal (t′) phase increased with decreasing RE3+ size, mainly attributable to the reduced driving force for t′ phase partitioning. The thermal conductivity of 1RE1Yb–YSZ was lower than that of YSZ, with the value decreasing with the increase of the RE3+ size mainly due to the increased elastic field in the lattice, but 1La1Yb–YSZ exhibited undesirably high thermal conductivity. By considering the comprehensive properties, 1Gd1Yb–YSZ ceramic could be a good potential material for TBC applications.  相似文献   

13.
《Ceramics International》2023,49(16):26397-26410
Inspired by the high entropy effects of high-entropy components, a novel high-entropy rare-earth zirconate (La1/5Gd1/5Y1/5Sm1/5Yb1/5)2Zr2O7 (HEC-LZ) was designed and successfully synthesized in this work. In addition, two binary rare-earth doped zirconates (RE-LZ), (La1/3Sm1/3Yb1/3)2Zr2O7 (LSYZ) and (La1/3Gd1/3Y1/3)2Zr2O7 (LGYZ), were proposed using the same rare-earth elements for comparison. The thermal barrier coatings with LZ-based ceramic top layer were prepared by spray granulation, solid-phase synthesis and atmospheric plasma spraying techniques. The as-synthesized LZ-based ceramics are all dominated by the pyrochlore phase. Under 1000 °C, the thermal cycling performances of the three coatings were studied. The microstructure evolution and crack expansion during the failure process were investigated in detail. The strengthening mechanism and the cause of coating spallation are proposed in combination with mechanical properties and thermal matching analysis. The results showed that compared with the undoped LZ coating, the thermal shock life of LGYZ coating, LSYZ coating and HEC-LZ coating is improved by nearly 46%, 27% and 57%, respectively. Due to the characteristics of high randomness, HEC-LZ ceramic has a large lattice distortion than RE-LZ ceramics, resulting in a higher coefficient of thermal expansion and fracture toughness, which contributes to maintaining the structure stability of coatings under thermal stress.  相似文献   

14.
The microstructure of following thermal barrier coatings (TBC) was characterised in this paper: monolayer coatings Nd2Zr2O7 and 8YSZ; a double ceramic layered (DCL) coating. Coatings were characterised by thicknesses that did not exceed 300 μm and porosities of approx. 5%. The chemical and phase composition analysis of the DCL layers revealed an external Nd2Zr2O7 ceramic layer approx. 80 μm thick, a transitional zone approx. 120 μm thick and an internal 8YSZ layer 100 μm thick. For the case of the monolayer coating, the Nd2Zr2O7 pyrochlore phase was the only one-phase component. The surface topography of both TBC systems was typical for plasma sprayed coatings, and compressive stress state had a value of approx. 5–10 MPa. Measurements of the thermal parameters, i.e., thermal diffusivity, point to considerably better insulative properties for both new types of layers when compared to the standard 8YSZ layers.  相似文献   

15.
La2Zr2O7 has high melting point, low thermal conductivity and relatively high thermal expansion which make it suitable for application as high-temperature thermal barrier coatings. Ceramics including La2Zr2O7, (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 were synthesized by solid state reaction. The effects of co-doping on the phase structure and thermophysical properties of La2Zr2O7 were investigated. The phase structures of these ceramics were identified by X-ray diffraction, showing that the La2Zr2O7 ceramic has a pyrochlore structure while the co-doped ceramics (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and the (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 exhibit a defect fluorite structure, which is mainly determined by ionic radius ratio r(Aav.3+)/r(Bav.4+). The measurements for thermal expansion coefficient and thermal conductivity of these ceramics from ambient temperature to 1200 °C show that the co-doped ceramics (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 have a larger thermal expansion coefficient and a lower thermal conductivity than La2Zr2O7, and the (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 shows the more excellent thermophysical properties than (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 due to the increase of Yb2O3 content.  相似文献   

16.
Gd2Zr2O7 ceramic was prepared by solid state reaction at 1650 °C for 10 h in air, and exhibited a defect fluorite-type structure. Reaction between molten V2O5 and Gd2Zr2O7 ceramic was investigated at temperatures ranging from 700 to 850 °C using an X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Molten V2O5 reacted with Gd2Zr2O7 to form ZrV2O7 and GdVO4 at 700 °C; however, in a temperature range of 750–850 °C, molten V2O5 reacted with Gd2Zr2O7 to form GdVO4 and m-ZrO2. Two different reactions observed at 700 °C and 750–850 °C could be explained based on the thermal instability of ZrV2O7.  相似文献   

17.
Rare-earth zirconates and cerates have attracted particular interest for thermal barrier coating (TBC) applications due to their advantageous thermal properties, such as a low conductivity and efficient phase stability at elevated temperatures. This study focuses on synthesising La2Zr2O7, Gd2Zr2O7, La2Ce2O7?γ and La2(Zr0.7Ce0.3)O7?γ compounds via two soft chemistry processes, alkoxide and citrate synthesis. Thermal analysis, X-ray diffraction (XRD) and scanning electron microscope observations were used to analyse the powder after calcinations under air. Chemical reactivity tests under a reducing atmosphere were performed at 1400 °C and investigated by XRD analysis. It was found that the lanthanum and gadolinium zirconates are the most stable and interesting materials under an Ar(g)/3%H2(g) atmosphere.  相似文献   

18.
《Ceramics International》2017,43(3):3015-3024
An optimal occupation of U4+ and U6+ in Gd2Zr2O7 is necessary for a really high immobilization capacity of U3O8 in Gd2Zr2O7 based waste forms. Based on four kinds of occupation methods, a series of U3O8-doped Gd2Zr2O7 compositions have been synthesized. The effects of U3O8 content on the phase and microstructure evolution of Gd2Zr2O7 pyrochlore waste forms were investigated. Detailed XRD analysis show that the four sets of samples exhibit a single defect fluorite structure within the range of 0<x≤0.4, 0<x≤0.66, 0<x≤0.6 and 0<x≤1, respectively. The highest solubility of U3O8 is about 82.29 wt% when the occupation design (U4+ and U6+ substitute for Gd and Zr, respectively) was employed. It was found that the cell parameters of compounds in Set A (Gd2–3x(U4+xU6+2x)Zr2O7+7x/2) decrease with increasing x, while those of the other compositions increase. Moreover, the uranium are almost homogeneously distributed in all samples.  相似文献   

19.
《Ceramics International》2017,43(9):7153-7158
In this work, Yb3+ was selected to replace the Y3+ in yttrium aluminum garnet (YAG) in order to reduce its thermal conductivity under high temperature. A series of (Y1-xYbx)3Al5O12 (x=0, 0.1, 0.2, 0.3, 0.4) ceramics were prepared by solid-state reaction at 1600 °C for 10 h. The microstructure, thermophysical properties and phase stability under high temperature were investigated. The results showed that all the Yb doped (Y1-xYbx)3Al5O12 ceramics were comprised of a single garnet-type Y3Al5O12 phase. The thermal conductivities of (Y1-xYbx)3Al5O12 ceramics firstly decreased and subsequently increased with Yb ions concentration rising from room temperature to 1200 °C. (Y0.7Yb0.3)3Al5O12 had the lowest thermal conductivity among investigated specimens, which was about 1.62 W m−1 K−1 at 1000 °C, around 30% lower than that of pure YAG (2.3 W m−1 K−1, 1000 °C). Yb had almost no effect on the coefficients of thermal expansion (CTEs) of (Y1-xYbx)3Al5O12 ceramics and the CTE was approximate 10.7×10−6 K−1 at 1200 °C. In addition, (Y0.7Yb0.3)3Al5O12 ceramic remained good phase stability when heating from room temperature to 1450 °C.  相似文献   

20.
《Ceramics International》2016,42(12):13849-13854
Sm2Zr2O7 and (Sm0.5Sc0.5)2Zr2O7 ceramics were fabricated by a chemical co-precipitation and calcination method, and their hot corrosion behaviors in Na2SO4+V2O5 molten salt were investigated. Hot corrosion tests were carried at 700 °C, 800 °C and 900 °C for 4 h, and corroded surfaces were investigated using X-ray diffractometer and scanning electron microscopy. The corrosion products of Sm2Zr2O7 ceramics were composed of SmVO4 and monoclinic-ZrO2, while those of (Sm0.5Sc0.5)2Zr2O7 ceramic consisted of SmVO4 and Zr5Sc2O13. Considering the fact that Zr5Sc2O13 is more desirable than monoclinic-ZrO2 for thermal barrier coating applications, (Sm0.5Sc0.5)2Zr2O7 showed better corrosion resistance to Na2SO4+V2O5 salt than Sm2Zr2O7. The hot corrosion mechanisms of Sm2Zr2O7 and (Sm0.5Sc0.5)2Zr2O7 in Na2SO4+ V2O5 salt were discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号