首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用有限元方法研究了焊后拉伸条件下高强度钢等匹配和低匹配对接接头内部应力的变化情况。结果表明,焊后横向和纵向拉伸载荷增至临界失效载荷期间,等匹配和低匹配接头的焊缝区和母材区应力均一直持续增加,但焊缝及近缝母材区应力在焊接残余应力基础上的增加较远端母材区缓慢;最终近缝母材区的应力明显高于远端母材区,未表现出内应力完全调匀的特征;这意味着由于焊接残余应力的存在,高强度钢宽板等匹配焊接结构的静载强度可能略有损失,而高强度钢宽板低匹配焊接结构更将在焊缝低强的影响下损失更大的静载强度。  相似文献   

2.
The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.  相似文献   

3.
选取1.0mm和1.5mm厚的B170P1高强度钢为研究对象,采用不同激光焊接工艺参数对其进行激光拼焊,焊后对焊接接头进行金相检验及显微硬度测试,分析了母材、焊缝及热影响区的微观组织特性;对焊后试样进行拉伸试验,研究了激光焊接工艺对力学性能的影响.结果表明,焊接功率的增加造成焊缝中粒状贝氏体数量增多,材料韧性变差;焊接速度大时焊缝中晶界铁素体以条状居多,焊接速度小时焊缝中主要是块状铁素体;激光热输入较小时,晶粒尺寸随热输入的增加增长迅速,调节热输入大小可抑制晶粒增长.  相似文献   

4.
采用手工钨极氩弧焊(TIG焊)打底,焊条电弧焊(SMAW)填充、盖面的焊接工艺对输送H_2S介质压力管道(20钢)进行维修焊接,并对其焊接接头进行720~750℃下保温1h的焊后热处理.对热处理前、后焊接接头组织和性能进行分析研究,结果表明:720~750℃×1h热处理使焊缝区与热影响区成针状分布的魏氏组织铁索体晶粒得到细化,并使其呈退化形态;焊缝区、热影响区与母材的显微硬度整体呈下降趋势;焊接接头抗拉强度大幅度提高,断裂均处在远离焊缝的母材上.焊后热处理有效地降低了焊接接头的残余应力,改变了残余应力的分布特征,使其分布趋于"均匀",拉应力大幅度降低.  相似文献   

5.
DILLIMAX690E钢超窄间隙熔化极气体保护自动焊   总被引:2,自引:2,他引:0       下载免费PDF全文
采用超窄间隙熔化极混合气体保护自动焊接技术,以厚板DILLIMAX690E钢与国产焊丝为对象,依据相关国家标准对690钢超窄间隙MAG焊接头进行了拉伸、侧弯和冲击试验,分析了接头各区显微组织、微区硬度和宏观形貌.结果表明,用超窄间隙熔化极混合气体保护自动焊工艺,在较小焊接热输入下,实现了对低合金调质高强钢DILLIMAX690E厚板的焊接,熔合良好,成形美观,焊态的焊接接头综合力学性能良好,同时实现了高效焊接.  相似文献   

6.
Hydrogen induced stress corrosion cracking at the fusion line between a low-alloy steel and high-alloy weld metal By analyzing the failure of welded joint consisting of low-alloy steel and high-nickel weld metal, a narrow zone of martensitic structure and high hardness was detected immediately adjacent to the fusion line. Within this region cracks had originated as a result of the simultaneous action of absorbed atomic hydrogen and mechanical stress. A similar situation arises when stainless steel based weld metal is used in welding unalloyed steel. In neither case, heat treatment provides a suitable measure to prevent the kind of failure observed.  相似文献   

7.
Results of analysis of investigations of welded joints produced in welding low-alloy high-strength 07G2NDMFBT steel at linear energies up to 6 kJ/mm show that the proposed combinations of welding materials and the technology of multi-arc submerged-arc welding result in high hot-cracking resistance and high properties of the weld metal. However, regardless of the high cold-cracking resistance of the steel, in welding at high heat inputs there is a considerable degradation of the structure and the toughness of the metal in the coarse-grained region of the heat-affected zone decreases under the effect of the welding thermal cycle. Consequently, it is concluded that the weldability of this steel is limited and it is therefore necessary to apply restrictions in the practical application of the processes with high heat input.  相似文献   

8.
9% Cr heat-resistant steels have been abundantly used in boilers of modern thermal plants. The 9% Cr steel components in thermal plant boilers are usually assembled by fusion welding. Many of the degradation mechanisms of welded joints can be aggravated by welding residual stress. Tensile residual stress in particular can exacerbate cold cracking tendency, fatigue crack development and the onset of creep damage in heat-resistant steels. It has been recognized that welding residual stress can be mitigated by low temperature martensitic transformation in 9% Cr heat-resistant steel. Neverthe-less, the stress mitigation effect seems to be confined around the final weld pass in multi-layer and multi-pass 9% Cr steel welded pipes. The purpose of this work is to investigate the method to break through this confine. Influence of martensitic transformation on welding stress evolution in multi-layer and multi-pass butt-welded 9% Cr heat-resistant steel pipes for different inter-pass temperatures (IPT) was investigated through finite element method, and the influential mechanism of IPT on welding residual stress was revealed. The results showed that tensile residual stress in weld metal (WM) and heat affected zone (HAZ), especially the noteworthy tensile stress in WM at pipe central, was effectively mitigated with the increasing of IPT. The reasons lie in two aspects, firstly, there is more residual austenite in the case of higher IPT, as a result, lower tensile stress is accumulated during cooling due to the lower yield strength of austenite; secondly, the higher IPT suppresses the martensitic transformation during cooling of each weld pass, thus the tensile stress mitigation due to martensitic transformation was avoided to be eliminated by welding thermal cycles of subsequent weld passes and reaccumulating tensile residual stress. The influence of IPT on welding residual stress relies on the combined contribution of thermal contraction and martensitic transformation. When the IPT is lower than martensite transformation finishing temperature (M-f), thermal contraction plays the dominant role in the formation of welding residual stress, and tensile stress was formed in the majority of weld zone except the final weld pass. While, compressive stress was formed in almost whole weld zone due to martensitic transformation when the IPT is higher than martensite transformation starting temperature (M-s).  相似文献   

9.
为提高效率、获得理想断裂位置并改善热影响区韧性,对控扎控冷工艺生产的8 mm厚Q690C低碳粒贝钢,选用等强度匹配的焊丝,采用无预热、低热输入(10 kJ/cm以下)三层全自动MAG工艺施焊.结果表明,无裂纹与成形缺陷;拉、弯与冲击性能均合格.焊缝为针状铁素体,韧性优异;仅在较窄的部分相变区(单道约0.2~0.4 mm)因回火而出现软化,但未对抗拉性能形成危害;因热输入低,拉伸断裂位置距焊缝更远;虽然熔合区与粗晶区为粗大平行上贝板条束+M-A组元,出现了硬化,但低热输入的低过热效果与两次后续焊道对贝氏体基体的明显回火作用改善了熔合区在0℃的冲击韧性.  相似文献   

10.
采用CO2激光对抗拉强度为600MPa,厚度1.4mm的DP钢进行焊接.研究焊接速度对焊缝外观和截面成形的影响、接头的组织特点、硬度、强度和成形能力.结果表明,激光功率相同,焊接速度较低时焊缝易产生气孔,焊接速度较高时易发生飞溅;焊接速度对焊缝熔深及熔宽也有影响.焊缝区组织主要由马氏体构成,从焊缝、焊接热影响区到母材,组织中马氏体含量下降,接头的最高硬度出现在焊缝或热影响区.在平行于焊缝方向,焊接接头的抗拉强度高于母材,垂直于焊缝方向,接头的抗拉强度与母材相当.由于焊缝出现马氏体组织,接头的塑性和韧性降低,板材的冲压成形能力下降.  相似文献   

11.
In multi-pass welds, the development of residual stress generally depends on the response of the weld metal, heat-affected zone (HAZ) and nearby parent material to complex thermo-mechanical cycles. Here, the evolution of local material properties and residual stress was investigated for each of these zones during the manufacture of a three-pass groove weld in SA508 steel. Residual stress distributions were measured by neutron diffraction for a sample in which only one weld bead had been deposited, and again for a completed three-pass weld. The evolution of material properties was also characterised by measuring local hardness and conducting tensile tests on small coupons that were extracted from the same welded specimens. Overall, the addition of subsequent weld passes resulted in lower peak tensile residual stresses in the weld as a whole, softening of the HAZ, modest cyclic hardening in nearby parent metal, and some softening in the low-carbon weld metal.  相似文献   

12.
由于异种钢理化特性的差异,在焊接过程中导致焊接接头的界面分布和裂纹失效机理与同种钢有所不同。文中从异种钢焊接接头的失效机制入手,介绍碳迁移导致熔合区出现软化和脆化现象,分析在焊接过程中导致其力学性能降低的本质原因,详细解释Type-II晶界和“白亮层”的形成机理,分析在高应力水平下异种钢焊接裂纹的形成机理和抑制措施。通过对异种钢焊接接头失效的本质原因进行系统性论述,为异种钢焊接失效机制的深入研究和工程应用提供理论指导,并提出针对异种钢焊接接头常见失效问题的解决方案。 创新点: (1)从焊缝过渡区域的特性着手,分析异种钢焊接接头失效机制的研究进展,提出抑制过渡区域中Type-II晶界的形成、缩小“白亮层”的宽度是提高焊接接头性能的关键措施。通过整理前人对异种钢焊接过程中的碳迁移过程的定量研究,明确了由于碳迁移造成的异种钢焊接接头软化和脆化机理。(2)提出基于精确施加冷源从而定量控制焊接热应力和残余应力的分布情况,是可能改善异种钢焊接裂纹失效问题的有效措施。  相似文献   

13.
In order to estimate the residual stresses in Ti2AlNb alloy jointed by electron beam welding (EBW), a computational approach based on finite element method was developed. Meanwhile, experiments were carried out to verify the numerical results. The comparison between the simulation results and measurements suggests that the developed computational approach has sufficient accuracy to predict the welding residual stress distributions. The results show that the central area of the fusion zone suffers tensile stresses in three directions. When the other parameters remain unchanged, the focus current has great impact on the weld shape and size, and then affects the residual stress level significantly. Moreover, the thick plate full-penetrated EBW weld suffers near 1000 MPa tensile stress of Z-direction in the center of the fusion zone. The wider weld has lower tensile stress in Z-direction, resulting in lower risk for cracking.  相似文献   

14.
Dissimilar joint between 304L austenitic stainless steel and low-alloy steel 16Mn was underwater wet welded using self-shielded nickel-based tubular wire. Microstructure, mechanical properties and corrosion behaviour of dissimilar welded joints were discussed. Ni-based weld metal was fully austenitic with well-developed columnar sub-grains. Type II boundary existed between Ni-based weld metal and ferritic base metal in underwater welds similar to that in air welds. Major alloying elements distributed non-uniformly across the austenitic weld metal/16Mn interface. Maximum hardness values in wet welding appeared in a coarse-grained heat-affected zone at the 16Mn side, which possessed very low impact toughness. Underwater Ni-based welded joints fractured at Ni-based weld metal under tensile test. Ni-based weld metal had favourable corrosion resistance similar to 304L base metal.  相似文献   

15.
The effects of ultrasonic impact treatment (UIT) on the residual stress within a 45?mm-thick high-strength steel welded joint were investigated. The internal residual stresses after UIT was measured with contour method and compared with the as-welded stresses simulated by finite element method. The surface stresses were also measured by X-ray diffraction method and hole-drilling method to validate the simulation model. Results show that UIT introduces compressive stress layer in the weld zone and has the same effect on the longitudinal and transverse welding stresses; the interior stresses increase and demonstrate more uniform distribution after UIT; UIT would not affect the initial compressive stress presented far away from the weld zone.  相似文献   

16.
6N01S-T5铝合金高速激光-MIG复合焊接工艺   总被引:3,自引:1,他引:2       下载免费PDF全文
王伟  王浩  陈辉  朱宗涛 《焊接学报》2019,40(7):55-60,66
针对高速列车侧墙6N01S-T5铝合金熔化焊时存在焊接变形大,接头软化严重等问题,提高激光-MIG复合焊的焊接速度降低热输入,并通过显微硬度、拉伸试验测试,结合金相及扫描电镜下的EDS分析,对比了高、低焊接速度两种工艺下接头力学性能及微观组织的差异;采用三坐标测量仪和X射线残余应力测试仪对试样焊接变形和残余应力进行测试分析.结果表明,当焊接速度达到4.8 m/min时焊缝仍能保证较好的成形;相比于0.6 m/min低速焊接,焊接效率大幅度提高,焊缝金属填充量减少68%,接头软化区宽度减小约60%;试件焊后变形及高应力分布区域变窄;焊缝组织细密,接头平均抗拉强度为207 MPa,达到母材强度的71%.  相似文献   

17.
采用Nd:YAG激光对强度为800MPa,厚度为1.2mm的TRIP钢板进行焊接.研究焊接速度对焊缝外观和截面成形的影响及接头的组织特点、硬度、强度和成形能力.激光功率相同,焊接速度较低时焊缝易产生气孔,速度较高时易发生飞溅;焊接速度对焊缝熔深及熔宽也有影响.焊缝组织主要由马氏体构成,从焊缝、热影响区到母材,组织中马氏体含量下降,接头的最高硬度出现在焊缝或热影响区.在平行于焊缝方向,焊接接头的抗拉强度高于母材,垂直于焊缝方向,接头的抗拉强度与母材相当.由于焊缝中出现马氏体,接头的塑性和韧性降低,板材的冲压成形能力下降.  相似文献   

18.
宋刚  董孝南  程继文  王泽力  刘黎明 《焊接学报》2023,44(4):1-6+29+129
为解决6061-T6铝合金焊后热影响区软化导致力学性能下降的问题,基于焊接接头余高大变形强化过时效软化区的思想,采用双轧辊系统对6061-T6薄板铝合金直流双脉冲熔化极气体保护焊(DC double pulse metal inert gas welding,DP-MIG焊)接头进行同步双面轧制,并分析了焊轧复合成形接头组织与力学性能.结果表明,焊缝晶粒受到竖直方向的轧制力发生大塑性变形,内部气孔消失,焊缝区域变宽,邻近焊缝的热影响区受到来自焊缝的挤压力发生协同宏观变形,远离焊缝的过时效软化区组织受到来自焊缝处的压应力,从沿垂直焊缝方向产生部分协同形变强化;接头的硬度明显提升,过时效软化区的硬度由60~70 HV提升至80~90 HV,过时效软化区的拉伸性能也有所提升,当焊接速度为800 mm/min时,抗拉强度最佳可达到母材的83.6%,相较于焊接接头提升19.4%,进而实现了对过时效软化区的强化效果.  相似文献   

19.
Keyhole gas tungsten arc welding(K-TIG)of Q345 low alloy steel plates was simulated by using SYSWELD software.The temperature field of the K-TIG welding process was simulated with three different combined heat sources and was compared with the weld profile that was obtained experimentally.The temperature field that was obtained by a combination of a double ellipsoid heat source on the upper half and a three-dimensional Gauss heat source on the lower half was similar to the real situation.The effects of plate thickness,gap and welding speed on the deformation and stress of the K-TIG welded joints were investigated by K-TIG welding numerical simulation.A reduction in the thickness of the weld plates reduced the z-direction deformation and transverse residual stress;an appropriate gap reduced the residual stress and an increase in the welding speed reduced deformation after welding,but did not help to control the residual stress after welding.  相似文献   

20.
针对6 mm厚的921A钢板,采用激光-MAG复合焊接工艺进行对接焊试验,并对焊接接头的显微组织、硬度、拉伸性能、耐腐蚀性能等进行了分析。结果表明,采用激光-MAG复合焊工艺可获得成形连续美观的焊接接头,无未熔合、裂纹、气孔等缺陷;焊缝组织为针状铁素体、少量沿晶界析出的先共析铁素体及长条状贝氏体,热影响区组织为马氏体;焊接接头的拉伸性能和冲击性能均符合国家标准要求,焊缝强度高于母材,但塑韧性低于母材。峰值硬度在热影响区,为315 HV,焊缝硬度约为280 HV,符合最高硬度不得超过410 HV的规定。焊缝耐电化学腐蚀性能最强,母材次之,热影响区最低;激光和MAG电弧2种热源共同作用区域的组织分布更加均匀,硬度及耐腐蚀性能较激光单独作用区域有了明显改善。 创新点: 采用激光-MAG复合焊实现了6 mm厚度921A钢板无缺陷对接焊的一次焊接成形。焊缝晶粒更加细化,分布更加均匀;焊缝抗拉强度、硬度、电化学腐蚀性能均高于母材,冲击吸收能量满足船级社要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号