首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The ume3-1 allele was identified as a mutation that allowed the aberrant expression of several meiotic genes (e.g. SPO11, SPO13) during mitotic cell division in Saccharomyces cerevisiae. Here we report that UME3 is also required for the full repression of the HSP70 family member SSA1. UME3 encodes a non-essential C-type cyclin (Ume3p) whose levels do not vary through the mitotic cell cycle. However, Ume3p is destroyed during meiosis or when cultures are subjected to heat shock. Ume3p mutants resistant to degradation resulted in a 2-fold reduction in SPO13 mRNA levels during meiosis, indicating that the down-regulation of this cyclin is important for normal meiotic gene expression. Mutational analysis identified two regions (PEST-rich and RXXL) that mediate Ume3p degradation. A third destruction signal lies within the highly conserved cyclin box, a region that mediates cyclin-cyclin-dependent kinase (Cdk) interactions. However, the Cdk activated by Ume3p (Ume5p) is not required for the rapid destruction of this cyclin. Finally, Ume3p destruction was not affected in mutants defective for ubiquitin-dependent proteolysis. These results support a model in which Ume3p, when exposed to heat shock or sporulation conditions, is targeted for destruction to allow the expression of genes necessary for the cell to respond correctly to these environmental cues.  相似文献   

3.
4.
5.
6.
7.
8.
LIM-kinase 1 (LIMK1) and 2 (LIMK2) are members of a novel class of protein kinases containing two LIM motifs at the N-terminus. The LIM motif is thought to be involved in protein-protein interactions. We report here evidence that LIMK1 self-associates and also associates with LIMK2. In vivo and in vitro binding analyses using variously deleted mutants of LIMKI revealed that the self-association of LIMK1 was caused by interaction between the N-terminal LIM domain and the C-terminal kinase domain. The association of LIMK1 with itself and with LIMK2 is important for understanding how activities and functions of LIMK family kinases are regulated.  相似文献   

9.
10.
11.
BACKGROUND: In the budding yeast Saccharomyces cerevisiae, the pheromones that induce haploid cells of opposite cell types to mate activate the Gbeta and Ggamma subunits of a heterotrimeric G protein. These subunits signal through the PAK kinase Ste20 to activate a mitogen-activated protein (MAP) kinase cascade comprising the MEKK Ste11, the MEK Ste7 and two MAP kinases, Fus3 and Kss1. The pathway requires Ste5, a scaffold protein that tethers the MAP kinase cascade enzymes into a high molecular weight complex. Ste5 is thought to associate with Gbeta in a pheromone-independent manner, but it is not known if this interaction affects signaling. RESULTS: A ste5C180A mutant - which expresses Ste5 disrupted in the LIM domain, a putative metal-binding motif that has been proposed to be essential for Ste5 oligomerization - could not transmit the pheromone signal from Gbeta through Ste20 to Ste11. The Ste5C180A protein was impaired in binding Gbeta, although it could oligomerize, bind Ste11, Ste7 and Fus3, facilitate the basal activation of Ste11, and relay the Ste11 signal to MAP kinases. Ste5 bound to Gbeta in a pheromone-dependent manner and preferentially associated with a phosphorylated form of Gbeta in wild-type and ste20Delta, but not in ste5C180A, strains. CONCLUSIONS: Pheromone induces binding of Gbeta to Ste5 through its LIM domain. This binding is essential for activation of Ste11 and is distinct from the ability of Ste5 to oligomerize or to serve as a scaffold and relay the signal from Ste11 to the MAP kinases. Pheromone also induces Ste5-dependent phosphorylation of Gbeta.  相似文献   

12.
13.
The ABC superfamily of transporters includes the mammalian P-glycoprotein family (Class I and Class II P-gps), the multidrug resistance-associated protein (MRP), the Pgh-1 product of Plasmodium falciparum gene pfmdr1, all of which are associated with cellular pleiotropic drug resistance phenomena. STE6, the yeast transporter for the farnesylated peptide pheromone a, is also a member of this family. Structural similarities in this family translate into functional homology as expression of mouse Mdr3S (P-gp), P. falciparum Pgh-1, and human MRP partially restore mating in a sterile yeast mutant lacking a functional STE6 gene. The demonstration that Class II P-gps function as phosphatidylcholine (PC) translocators raise the possibility that other ABC transporters may also interact with physiological lipids. We report the identification of the synthetic lipid and PC analog ET-18-OCH3 (edelfosine) as a substrate for not only Class II P-gp but also for Class I P-gps and surprisingly for the other ABC transporters MRP, Pgh-1, and STE6. Expression of these proteins in the yeast Saccharomyces cerevisiae JPY201 was found to confer cellular resistance to cytotoxic concentrations of this lipid by a factor of 4-20-fold in a growth inhibition assay. The noted activity of ABC transporters toward this synthetic lipid was specific as a mutant variant of Mdr3 (Mdr3F) with reduced activity could not convey cellular resistance to ET-18-OCH3. ET-18-OCH3 was also found capable of blocking a-peptide pheromone transport and STE6 complementation by these ABC proteins. The inhibitory effect of ET-18-OCH3 on cell growth and a-factor transport could be abrogated by incubation with the lipid acceptor protein BSA or by enzymatic cleavage by microsomal alkylglycerol mono-oxygenase (MAMO). MAMO and BSA reversal of the ether lipid effect was only seen in the presence of a functional transporter. These results suggest that the group of cytotoxic synthetic PC analogs studied reveal possible structural and functional aspects common to the ABC transporters tested. Furthermore, the studies with BSA and MAMO suggest that the mechanism of transport of ET-18-OCH3 by these ABC transporters may be related to the flippase mechanism of PC transport by Mdr2.  相似文献   

14.
15.
Patients with adult GH deficiency are often dyslipidemic and may have an increased risk of cardiovascular disease. The secretion and clearance of very low density lipoprotein apolipoprotein B 100 (VLDL apoB) are important determinants of plasma lipid concentrations. This study examined the effect of GH replacement therapy on VLDL apoB metabolism using a stable isotope turnover technique. VLDL apoB kinetics were determined in 14 adult patients with GH deficiency before and after 3 months GH or placebo treatment in a randomized double blind, placebo-controlled study using a primed constant [1-(13)C]leucine infusion. VLDL apoB enrichment was determined by gas chromatography-mass spectrometry. GH replacement therapy increased plasma insulin-like growth factor I concentrations 2.9 +/- 0.5-fold (P < 0.001), fasting insulin concentrations 1.8 +/- 0.6-fold (P < 0.04), and hemoglobin A1C from 5.0 +/- 0.2% to 5.3 +/- 0.2% (mean +/- SEM; P < 0.001). It decreased fat mass by 3.4 +/- 1.3 kg (P < 0.05) and increased lean body mass by 3.5 +/- 0.8 kg (P < 0.01). The total cholesterol concentration (P < 0.02), the low density lipoprotein cholesterol concentration (P < 0.02), and the VLDL cholesterol/VLDL apoB ratio (P < 0.005) decreased. GH therapy did not significantly change the VLDL apoB pool size, but increased the VLDL apoB secretion rate from 9.2 +/- 2.0 to 25.9 +/- 10.3 mg/kg x day (P < 0.01) and the MCR from 11.5 +/- 2.7 to 20.3 +/- 3.2 mL/min (P < 0.03). No significant changes were observed in the placebo group. This study suggests that GH replacement therapy improves lipid profile by increasing the removal of VLDL apoB. Although GH therapy stimulates VLDL apoB secretion, this is offset by the increase in the VLDL apoB clearance rate, which we postulate is due to its effects in up-regulating low density lipoprotein receptors and modifying VLDL composition.  相似文献   

16.
17.
The complex of rapamycin with its intracellular receptor, FKBP12, interacts with RAFT1/FRAP/mTOR, the in vivo rapamycin-sensitive target and a member of the ataxia telangiectasia mutated (ATM)-related family of kinases that share homology with the catalytic domain of phosphatidylinositol 3-kinase. The function of RAFT1 in the rapamycin-sensitive pathway and its connection to downstream components of the pathway, such as p70 S6 kinase and 4E-BP1, are poorly understood. Here, we show that RAFT1 directly phosphorylates p70(S6k), 4E-BP1, and 4E-BP2 and that serum stimulates RAFT1 kinase activity with kinetics similar to those of p70(S6k) and 4E-BP1 phosphorylation. RAFT1 phosphorylates p70(S6k) on Thr-389, a residue whose phosphorylation is rapamycin-sensitive in vivo and necessary for S6 kinase activity. RAFT1 phosphorylation of 4E-BP1 on Thr-36 and Thr-45 blocks its association with the cap-binding protein, eIF-4E, in vitro, and phosphorylation of Thr-45 seems to be the major regulator of the 4E-BP1-eIF-4E interaction in vivo. RAFT1 phosphorylates p70(S6k) much more effectively than 4E-BP1, and the phosphorylation sites on the two proteins show little homology. This raises the possibility that, in vivo, an unidentified kinase analogous to p70(S6k) is activated by RAFT1 phosphorylation and acts at the rapamycin-sensitive phosphorylation sites of 4E-BP1.  相似文献   

18.
Pr6O11 nanoparticles were obtained by subsequent thermal decomposition of the as-prepared precipitate formed under ambient temperature and pressure using NaOH as precipitant.The calcination process was affected,for 1 h in static air atmosphere,at 400-700 °C temperature range.The different samples were characterized using X-ray diffraction(XRD),transmission electron microscopy(TEM),field emission scanning electron microscopy(FE-SEM),thermogravimetric analysis(TGA),in situ electrical conductivity,and N 2 adsorption/desorption.The obtained results demonstrated that nano-crystalline Pr6O11,with crystallites size of 6-12 nm,started to form at 500 °C.Such value increased to 20-33 nm for the sample calcined at 700 °C.The as-synthesized Pr6O11 nanoparticles presented high electrical conductivity due to electron hopping between Pr(III)-Pr(IV) pairs.  相似文献   

19.
To further define the structure and function of the domains in HIV-1 and SIV Tat proteins, chimeric Tat cDNA expression constructs were generated with crossover points at the carboxy-terminal end of the cysteine rich domain. The chimera containing the amino-terminal region of SIV and carboxy-terminal region of HIV exhibited activity similar to HIV-1 Tat and SIV Tat on both the HIV-1 and SIV LTRs. In contrast, the reciprocal chimera functioned poorly. As determined by the activity of carboxy-terminal truncation mutants, the region immediately downstream of the basic domain is critical for efficient transactivation by HIV-1 Tat, but not SIV Tat protein. In this report, we present a model for Tat domains based on NMR data and the known functional properties of Tat protein. According to our modeling two sites for protein : protein interactions are present in HIV-1 and SIV Tat proteins. Site I, which is presumably involved in cyclin T binding, is similar in both HIV-1 and SIV Tat proteins as well as in Tat chimeras. Site II, however appears structurally different in HIV-1 and SIV Tat models, although in both cases is comprised of amino and carboxy-terminal residues. Differences in Site II may thus account for the differential activities of HIV-1 and SIV Tat carboxy-terminal truncations. Site II in the poorly active chimera differs significantly from that found in HIV-1 and SIV Tat proteins. The two site structural model presented here may have important implications for the role of Tat in HIV pathogenesis and may provide insights for the design of Tat vaccines and targeted therapeutics.  相似文献   

20.
In order to compare the efficacy of immediate intravenous oxytocin administration and intracervical prostaglandin E2 gel application in premature rupture of membranes with unfavorable cervices at term, 45 term pregnant patients with premature rupture of membranes were randomized into two groups. Twenty women received immediate intravenous oxytocin after cleansing enema while the rest were treated with intracervical prostaglandin E2 gel. Means of maternal age, gestational age, Bishop score at admission and the rates of nulliparity did not show any significant differences between the two groups (p > 0.05). The mean rupture to delivery time was 12.6 +/- 4.4 hours in the oxytocin group and 16.5 +/- 4.5 hours in the prostaglandin group (p < 0.01). Mean birth weights and Apgar scores were insignificant. Cesarean section rates were 24% in the oxytocin group and 5% in the other (p < 0.05). No infectious morbidity was seen in any case. In conclusion, although delivery is delayed with the intracervical prostaglandin approach, cesarean section rate is lowered without an increase in infectious morbidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号