首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由于利用经典最小二乘原则对激光跟踪仪进行坐标转换时,系数矩阵中携带的随机测量误差会影响转站精度,故对激光跟踪仪的转站算法进行了研究。提出了基于线性EIV模型(Errors-in-Variables)和加权整体最小二乘法(WTLS)并利用间接平差形式迭代求解转站参数的方法;利用Matlab进行仿真分析并用API公司生产的激光跟踪仪进行实验。仿真结果显示WTLS法的单位权中误差的平均值和标准差分别为经典加权最小二乘法(WLS)的4/5和1/5;实验结果显示WTLS和WLS两种方法的单位权中误差分别为2.003 5mm和2.225 3mm;这些数据证明采用WTLS法的转站结果比WLS的精度更高且更稳定。该方法可为组建激光跟踪仪测量网络,优化网络布局奠定基础。  相似文献   

2.
基于激光跟踪仪的数控机床几何误差辨识方法   总被引:8,自引:0,他引:8  
激光跟踪仪作为一种三维测量仪器在工业测量中得到广泛应用,利用激光跟踪仪采用多站分时测量方法实现数控机床几何误差的快速、高精度检测.该方法通过控制机床按设定的路径在3D空间进给,一台激光跟踪仪先后在不同的基站位置对机床相同的运动轨迹进行测量,基于全球定位系统(Global positioning system,GPS)定位原理,确定基站的相对空间位置与各测量点的空间坐标,然后辨识出机床的各项几何误差.通过建立多站分时测量机床精度的数学模型,给出多站分时测量的算法原理,并推导出机床各项误差的分离算法,同时通过仿真验证该误差分离算法的可行性.试验表明,激光跟踪仪采用多路分时测量方法在4h内完成对一台数控铣床的精度检测,并分离出铣床的各项误差,该方法具有快速、精度高等优点,在中高档数控机床的精度检测中具有一定的应用前景.  相似文献   

3.
三维激光球杆仪是自研发的一种被动式激光跟踪仪,为了提高其测量精度,该文系统地分析了其主要误差源及补偿方法。首先,通过误差源分析,基于多体系统误差建模理论对仪器进行精度建模;其次,针对误差补偿模型,提出了简单有效的模型参数测量方法,即多齿分度台和光电自准直仪标定二维转台两测角误差,正倒镜法测量两旋转轴的不相交度,精密三轴机床测量轴系不垂直度误差;最后,完成精度补偿验证。实验结果表明,在有效测量范围内,补偿后的垂直度误差从120μm减小到28μm,X轴定位误差从20μm减小到8μm,Z轴定位误差从60μm减小到25μm。研究表明该补偿方法在不改变硬件结构的基础上能有效提高仪器的精度。  相似文献   

4.
激光跟踪仪测角误差的现场评价   总被引:6,自引:0,他引:6  
激光跟踪仪是基于角度传感和测长技术相结合的球坐标测量系统,其长度测量采用激光干涉测长方法,可直接溯源至激光波长,因此,激光跟踪仪的长度测量精度远高于角度测量精度,相对而言,测角误差就成为评价跟踪仪测量精度的重要指标。为了对现场测量激光跟踪仪的测角误差进行快速有效地评价,采用跟踪仪多站位对空间中测量区域内若干个被测点进行测量,与传统基于角度交汇原理的多站位冗余测量不同,利用各站位所观测的高精度测长值建立误差方程,并通过测长方向的矢量位移对跟踪仪测长误差进行约束,获得被测点三维坐标在跟踪仪水平角和垂直角方向上的改正值,以此来评价激光跟踪仪的测角误差。通过Leica激光跟踪仪AT901-LR进行了多站位测角误差评价实验,在现场测量条件下,跟踪仪水平和垂直方向测角误差约为0.003 mm/m(1σ),符合跟踪仪的测量误差特性。  相似文献   

5.
张白  林家春 《机械传动》2019,43(10):146-150
为了测量特大型齿轮齿距偏差,提出了基于激光跟踪仪的特大型直齿轮齿距测量新方法。利用激光跟踪仪的大空间测量能力测量齿轮齿槽,分别获得被测特大型直齿轮相邻两条齿距误差曲线。由于被测齿轮直径超过6 000 mm,可以根据点到直线距离公式近似计算单个齿距误差。首先,分析了传统方法下基于激光跟踪仪构建齿轮工件坐标系后的齿距测量模型,并根据特大型直齿轮的特点,提出了基于激光跟踪仪的无坐标系特大型直齿轮齿距误差测量模型。测量模型回避了特大型齿轮工件坐标系的建立,直接对齿槽进行双面接触测量;通过对两条齿槽测量直线进行误差评定即可获得单个齿距最大误差与单个齿距平均误差,通过转站测量实现齿距累积总偏差的测量;最后,采用蒙特卡罗法对不同测量方法的测量不确定度进行仿真分析,得出系统测量不确定度。实验结果表明,提出的基于激光跟踪仪的特大型直齿轮齿距偏差测量方法满足直径6 000 mm以上的8级精度特大型齿轮的单个齿距偏差测量要求,满足直径6 000 mm以上的10级精度特大型齿轮的齿距累积总偏差测量要求。  相似文献   

6.
被动式跟踪测量系统由一个二维旋转平台和一个径向伸缩机构组成,用于测量目标的空间坐标。伸缩机构的末端固定有一个标准球,该标准球被目标磁吸,其径向位移由直线光栅尺测量。二维转盘的旋转角度由两个各自的圆形光栅测量。分析了被动式跟踪测量系统的主要误差来源,基于旋量理论建立了误差模型。最后,利用三坐标测量检测误差模型的补偿效果。经过误差补偿后,被动式跟踪测量系统在450×450×200mm空间的最大测量误差降低到132.2μm。  相似文献   

7.
针对航空制造业中面向大尺寸空间的激光跟踪仪测量不确定度评估问题,提出了综合建站误差的激光跟踪仪测量不确定度评估方法。在构建激光跟踪仪测量模型与误差模型的基础上,将测量设备建站误差引入优化模型,并通过跟踪仪建站、空间点测量等环节,对受建站误差和测量误差双重因素影响的跟踪仪空间点测量不确定度进行了仿真测试和数据分析。以某工装的现场测量为例,构建了仿真测量空间,通过对比地标点采样值与实测值之间的偏差,验证了算法的有效性。  相似文献   

8.
提出了一种基于克里金插值的机床空间误差测量与补偿方法。机床加工精度一般受切削力、热变形和空间误差的影响,为采集机床空间误差样本,提出了一种基于克里金插值的测量方法,利用激光跟踪仪测量给定点的空间误差,通过克里金插值计算给定点之间的空间误差,并进行了机床空间误差测量实验。结果表明,克里金插值的计算精度明显高于线性插值,有效提高了空间误差测量精度。为实施空间误差补偿,通过对机床误差模型进行分步解耦,开发了空间误差补偿器,并进行了机床空间误差补偿实验。结果表明,机床主轴在X轴方向的变形量为025μm,实施空间误差补偿后,某工件平面加工后的最大轮廓误差由15μm减小到了5μm。该补偿方法为提高数控机床的加工精度提供了一种有效途径。  相似文献   

9.
使用传统公共点定向方法很难在狭小、受限空间下完成对大尺寸测量仪器的定向,故本文提出了一种受限空间下球坐标测量系统的双面互瞄定向方法,并以激光跟踪仪为例进行了理论分析和实验验证。该方法结合激光跟踪仪的测量原理和使用特点,通过激光跟踪仪本体测头的运动特性构建几何约束,仅要求测量仪器之间相互可视,便可依靠较小公共视场完成仪器定向。阐述了该方法的数学建模过程,研究了定向优化算法,并在上海光源环形测量控制网建立过程中进行了相关实验验证。结果表明:该方法在仪器相距5m以内时,参考点转站误差优于0.12mm,定向旋转角误差不超过1.5″。与频繁转站的传统方法相比,可在保证精度的同时,极大地提高现场测量效率。该方法亦可推广应用于其它单站坐标测量系统。  相似文献   

10.
《工具技术》2017,(10):125-128
通常评定工业机器人位置误差需要从激光跟踪仪测量系统的坐标系至机器人基础坐标系进行空间坐标变换。由于变换的精度难以确定,导致测量工业机器人的位置精度降低。为了避免这种现象,将空间坐标系的变换替换为由使用激光跟踪仪测量空间点得出的空间距离值来衡量工业机器人的位置误差。由此建立工业机器人的空间距离模型,去除空间坐标变换带来的误差影响,将位置准确度的评定误差由原先的0.0055mm提高至0.0024mm。  相似文献   

11.
考虑飞秒激光跟踪仪仪器轴系的几何误差会影响仪器的指向精度并最终影响坐标测量精度,本文研究了激光光轴与竖轴的几何误差对仪器测量精度的影响。提出了激光光轴与竖轴的同轴度标定方法,以降低其不重合带来的跟踪测量误差。首先,基于几何光学原理建立了光轴与竖轴的几何误差模型,分别分析了光轴与竖轴的倾斜与平移误差对仪器测角精度的影响。然后,针对设计的仪器提出了基于旋转成像原理的光轴与竖轴同轴度的检测方法,并设计了一套同轴度检测装置。最后,基于该检测装置,通过调节两组双光楔完成了激光光轴与竖轴的倾斜与平移误差的标定。结果显示,经标定校准后激光光轴与竖轴的角度误差为3.4″;平移误差为26.1μm,得到的结果为仪器后续建立误差补偿模型奠定了基础。  相似文献   

12.
激光跟踪测量系统角度自动校正装置设计   总被引:5,自引:5,他引:0  
激光跟踪测量系统是目前最新型的便携式空间大尺寸坐标测量系统,利用激光干涉测长、精密测角及目标跟踪技术,可对任意点的空间位置进行实时跟踪测量。然而,目标反射器接收角度的大小严重影响了激光跟踪测量系统角度测量精度,为解决激光跟踪测量系统在动态测量中因角锥棱镜逆反射器接收角度范围限制而导致无法测量问题,研制开发了一种能使激光跟踪测量系统在动态条件下连续测量的角度自动校正装置。它主要由精密圆形导轨和角度方位自动调节机构组成,能使角锥棱镜在动态测量过程中始终指向激光跟踪测量系统,从而实现在动态条件下的连续工作。最后利用研制角度自动校正装置对激光跟踪测量系统进行了角度误差补偿实验,结果表明该装置使激光跟踪测量系统的水平角测量误差由34.69µm减小到9.71µm,垂直角测量误差由35.43µm减小到10.03µm,从而有效地提高了激光跟踪测量系统的角度测量精度。  相似文献   

13.
圆光栅角度传感器的误差补偿及参数辨识   总被引:6,自引:5,他引:1  
基于正弦函数和粒子群算法提出了一种误差补偿及参数辨识方法,用于提高圆光栅角度传感器的测量精度。使用光电自准直仪和金属多面体对圆光栅角度传感器的测量误差进行了离散标定,通过对标定数据的频谱分析,发现传感器测量误差主要由几种不同频率的正弦函数信号组成,由此提出了一种基于正弦函数的圆光栅角度传感器误差补偿模型。补偿模型中包含7个待定常量,本文采用粒子群算法求解这7个待定常量以克服最小二乘法无法收敛的问题。以待定常量为粒子位置坐标,以平均误差为适值函数,建立了一种基于粒子群算法的参数辨识模型,并根据参数辨识模型求出最优的待定常量。应用补偿模型对关节臂式坐标测量机的6个圆光栅角度传感器测量误差进行了补偿,结果表明:补偿后各角度传感器的平均测量误差减小了约398~1102.5倍,大大地提高了传感器的测量精度。  相似文献   

14.
数显千分表零/部件制造和安装误差及使用磨损是影响其测量精度的主要因素。为了提高其精度,基于数显千分表的单片机嵌入式控制系统,提出采用北方苍鹰优化(Northern Goshawk Optimization, NGO)算法和贝叶斯正则化(Bayesian Regularization, BR)算法改进BP神经网络(NGO-BR-BP神经网络)的非线性测量误差软件补偿方法,并将其与基于BP神经网络、贝叶斯正则化BP神经网络的补偿模型进行了比较,论证了基于NGO-BR-BP神经网络的数显千分表非线性误差补偿模型具有较高的预测精度,且模型可靠性高、稳定性好。实验结果表明,在0~50 mm的测量范围内,所提出的方法可使最大误差降低到0.888 527μm,而没有补偿前的最大误差为5.626μm。在数显千分表的嵌入式系统中植入NGO-BR-BP神经网络以提高千分表的测量精度,是可行和有效的。  相似文献   

15.
介绍了一种测量隐藏特征和表面特征的激光跟踪仪探头(FaroRetroProbe)的结构和工作原理,详细分析了该探头的空心角锥棱镜误差、空心角锥棱镜和探针的对称性误差及平面反射镜的面形误差等主要误差及其对激光跟踪仪测量结果的影响,并针对性地指出提高激光跟踪仪测量精度的措施。  相似文献   

16.
基于激光干涉仪的测量机几何误差检定技术   总被引:12,自引:5,他引:12  
误差补偿技术是提高测量机精度的一项重要技术,其内容包括误差模型的建立、误差检定和误差补偿。针对一种特定结构形式的测量机建立其包含13项原始几何误差的误差补偿数学模型,提出基于激光干涉仪的,针对包括定位误差、直线度运动误差、角运动误差和垂直度误差在内的测量机各单项几何误差的检定方法,并通过数学模型对测量机的测量误差作补偿,由此生成的误差检定模块还可以嵌入到测量机软件中,实现对测量机几何误差的快速检定和反复检定。试验表明,经误差补偿,测量机单轴在176mm测量范围内的最大测量误差由补偿前的0.1399mm减小为0.0017mm。利用该方法检定测量机的几何误差并作误差补偿能够有效地提高测量机精度。  相似文献   

17.
介绍激光跟踪仪精度校验方法。用激光跟踪仪与高精密立式加工中心比对来测量激光跟踪仪在IFM(干涉测量模式)模式下精度,为激光跟踪系统的验收提供依据,同时为激光跟踪仪误差补偿提供数据支持。  相似文献   

18.
我厂现有的分度蜗杆,单圈及全长螺旋线误差大多要求在0.0052mm和0.0105mm之内,回转工作台分度蜗杆精度要求更高,相应的蜗轮滚刀精度要求也很高。用PWF—300滚刀检查仪测量这种高精度的工件时,必须减少测量误差,提高测试结果的可靠性。 使用德国进口的PWF一300滚刀检查仪测量工件时,要借助于量块的组合使正弦规工作。但量块的组合尺寸与计算出的公称尺寸允差多大,仪器说明书中未做具体规定,有的使用单位规定在1μm内,有的规定在0.7μm之内,做法不一,这些误差对测量结果的影响究竟有多大未表述;另外,这台仪器的国家计量检定规程中规定了基圆盘的直径公差和600mm、250mm正弦规的准确度,如果它们有尺寸偏差,对测量影响又有多大,本文对以上几点进行了分析。  相似文献   

19.
李兵  孙彬  陈磊  魏翔 《光学精密工程》2015,23(7):1939-1947
以点激光位移传感器(HL-C211BE)为对象,研究它在自由曲面测量中的应用。针对激光位移传感器因测点倾角代入的测量误差,提出了一个可以量化的倾角误差模型。基于直射式点激光三角法原理,分析了激光光路的几何关系,从会聚光斑光能质心发生的偏移推导出倾角误差模型。随后,用高精度激光干涉仪和正弦规对激光位移传感器进行校对实验,并用误差模型对测量结果进行补偿。结果显示,补偿后激光位移传感器的测量精度得到明显提高。对一非球面凸透镜进行了实验测量,得到了自由曲面测点倾角的计算方法,并用倾角误差模型修正了测量数据。实验结果表明,量化的倾角误差模型可以将激光位移传感器的测量误差控制到小于10μm,满足激光位移传感器在自由曲面测量中应用的要求。  相似文献   

20.
基于共路光线漂移补偿的直线度测量   总被引:2,自引:0,他引:2  
针对影响激光测量直线度误差的主要因素之一激光光线漂移,提出了一种基于共路光线漂移补偿的直线度误差测量方法,给出了具体的测量原理和系统构成。从产生激光光线漂移的几个因素出发,理论分析了所产生的光线漂移对直线度误差测量的影响,建立了相对应的光线漂移补偿模型。结果表明,进行补偿后激光器出射光线引起的光线漂移在X方向的最大漂移量由28.4μm减少为5.6μm,Y方向的最大漂移量由21.6μm减少到5μm;由温度梯度引起的光线漂移经补偿后最大漂移量由65.7μm减少为8.9μm。实验结果与理论分析均表明,该方法能有效减少各种因素引起的光线漂移对直线度测量结果的影响,提高测量直线度误差的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号