首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高温固相反应法,在空气气氛中制备了纯LaAlO_3和Ca~(2+)–Cr~(3+)共掺杂LaAlO_3陶瓷材料,对其在近红外的发射率以及热导率进行了研究比较。结果表明:20%Ca_~(2+)(摩尔分数)和20%Cr~(3+)掺杂后的La_(0.8)Ca_(0.2)Al_(0.8)Cr_(0.2)O_3在0.76~2.50μm的红外发射率达0.92,比纯LaAlO_3提高了300%;Ca~(2+)和Cr~(3+)的掺杂降低了陶瓷材料的热导率,在1 200℃时LaAlO_3和La_(0.8)Ca_(0.2)Al_(0.8)Cr_(0.2)O_3的热导率最低,La_(0.8)Ca_(0.2)Al_(0.8)Cr_(0.2)O_3的热导率最低值为2.602 W·m–1·K~(–1),较纯LaAlO_3降低了38%。  相似文献   

2.
为探究金刚石含量对玻璃/Al_(2)O_(3)复合基板性能的影响,一定条件下,对它们冷压烧结制取试样,利用扫描电镜和X射线衍射仪进行显微结构和组织分析;利用万能抗折试验机、热膨胀系数和孔隙率测试仪测试其物理性能。结果表明:随着金刚石含量增加,复合材料的气孔率、抗弯强度、热导率增大;常数、介电损耗、热膨胀系数随之减小。当金刚石的含量增加到20 wt%时,金刚石/玻璃/Al_(2)O_(3)复合材料的气孔率为29.66%,介电常数值达到最小7.33,介电损耗降低为1.30×10^(-3),抗弯强度达到最大值77.16 MPa,复合材料的热膨胀系数为6.52×10^(-6)/℃,且具有最大的热导率9.66 W/(m·K)。  相似文献   

3.
通过哈克密炼–模压成型法制备了线型低密度聚乙烯(PE-LLD)/Al_2O_3复合材料,并在不同温度条件下对复合材料的导热性能进行研究。通过扫描电子显微镜、热失重分析仪、差示扫描量热仪、激光导热仪和精密阻抗分析仪研究了复合材料中Al_2O_3的分散性及复合材料的热稳定性、熔融行为、导热性能和介电性能。结果表明,Al_2O_3均匀分散在PE-LLD基体中;添加微米级Al_2O_3后,复合材料的熔点和熔融焓变化不大,热稳定性能有所提高;当Al_2O_3添加量为100份时,复合材料的热导率为1.426W/(m·K),比纯PE-LLD的热导率提高218.0%;随着温度的升高,Al_2O_3的添加量越多,复合材料的热导率降低越明显;随着Al_2O_3添加量的增加,复合材料的介电常数和介电损耗增大,在低频时增加更明显。  相似文献   

4.
实验以Ca-Ba-Mg-Al-B-Si-O玻璃与Al_2O_3粉料为原料,设计玻璃与Al_2O_3粉料复合的质量比分别为60∶40、55∶45、50∶50、45∶55,采用低温烧结法制备LED基板材料。研究结果表明:随着Al_2O_3含量(质量分数)增加,样品的烧成收缩率与热导率先增加后减小。添加45%Al_2O_3的玻璃/Al_2O_3材料于875℃烧结良好,试样烧成收缩率为12.82%,体积密度为3.10 kg/L,10 MHz下介电常数为8.03,介电损耗为0.000 7,热导率为2.89 W/(m·K)。高温下Ca~(2+)离子、Al~(3+)离子、Si~(4+)离子与O~(2-)离子聚集在一起发生了化学反应,形成了CaAl_2Si_2O_8晶体。玻璃/Al_2O_3烧结材料的主晶相为玻璃、氧化铝、钙长石,SEM显示烧结体微观结构致密。因此该体系材料比较适合用作低温烧结LED基板材料。  相似文献   

5.
以Sm_2O_3和Ce(NO_3)·6H_2O为原料,采用溶胶凝胶法和固相烧结法合成了Sm_xCe_(1-x)O_(2-x/2)陶瓷材料。研究了材料的相结构和显微组织,热导率和热膨胀。结果表明:合成的Sm_xCe_(1-x)O_(2-x/2)陶瓷纯净并具有单一的萤石结构。其显微组织致密,晶界清晰。Sm_2O_3掺杂能降低CeO_2的热导率,其1000℃时的热导率在2.2~2.6 W/m·K之间,与氧化钇部分稳定氧化锆的热导率相当;Sm_xCe_(1-x)O_(2-x/2)陶瓷的热膨胀随Sm_2O_3含量的增加而降低,其1200℃时的热膨胀系数大于13×10~(-6)/K。  相似文献   

6.
以Al_2O_3、Zr O_2、MgO为初始粉末,采用放电等离子体烧结(SPS)制备ZTA-MgAl_2O_4复相陶瓷,研究MgAl_2O_4掺杂对ZTA-MgAl_2O_4复相陶瓷微观结构,力学及热学性能的影响。结果表明:ZTA-MgAl_2O_4复相陶瓷物相包括α-Al_2O_3、t-Zr O_2和MgAl_2O_4,烧结过程中MgO与Al_2O_3完全反应生成MgAl_2O_4;随MgAl_2O_4添加量增加,复相陶瓷Vickers硬度由21 GPa逐渐降低至17.5 GPa;而断裂韧性及抗弯强度呈现先增大后减小的趋势,当MgAl_2O_4添加量为15%(体积分数)时,断裂韧性和弯曲强度达到最大值,分别为8.55 MPa·m~(1/2)和1 056 MPa;此外,相同测试温度下复相陶瓷热导率随MgAl_2O_4添加量的增加逐渐减小,如温度为50℃时复相陶瓷热导率由18.5 W/(m·K)逐渐降低到14.3 W/(m·K)。  相似文献   

7.
采用柠檬酸燃烧法合成一系列Pr_(0.7)Ca_(0.3)Cr_(1-x)O_(3-δ)连接材料,利用X射线衍射和扫描电子显微镜对材料的物相和微观形貌进行表征,四端子探针法测量样品的电导率,热膨胀仪测定热膨胀系数。结果表明:Cr缺位对材料Pr_(0.7)Ca_(0.3)CrO_(3-δ)物相结构没有影响;Cr缺位提高材料的烧结性能。x=0.07的样品,1400℃烧结5h,相对密度达98%;700℃时,样品在空气和氢气气氛的电导率分别为34和17S/cm;样品的热膨胀系数为9.6×10~(–6)/K,与YSZ(8mol%Y_2O_3-ZrO_2)电解质的热膨胀系数接近。意味着Cr缺位Pr_(0.7)Ca_(0.3)Cr_(1-x)O_(3-δ)材料体系是固体氧化物燃料电池有潜力的陶瓷连接材料。  相似文献   

8.
以高纯度Sm_2O_3、HfO_2和CeO_2为原材料,采用高温固相反应法制备了Sm_2(Hf_(1-x)Ce_x)_2O_7氧化物,对其相组成、热膨胀性能和热导率进行了研究。结果表明,成功合成了具有单一焦绿石结构的Sm_2(Hf_(1-x)Ce_x)_2O_7氧化物。由于元素掺杂所引起的声子散射加剧,该系列氧化物热导率随着Ce~(4+)含量增加而降低。由于Ce和Hf之间电负性差别,该系列氧化物的热膨胀系数随Ce~(4+)含量增加而降低。该系列氧化物的热膨胀系数和热导率满足热障涂层的要求。  相似文献   

9.
用Y2O3掺杂La2Zr2O7制备(La1–xYx)2Zr2O7(x=0,0.1,0.2,x为摩尔分数)陶瓷材料,利用X射线衍射仪、扫描电子显微镜、激光导热仪以及热膨胀仪分别对其物相结构、显微形貌、热导率及热膨胀性能进行表征。结果表明,(La1–xYx)2Zr2O7为立方烧绿石结构,显微结构致密,在室温至1 450℃范围内具有良好的高温相稳定性。La2Zr2O7掺杂小离子半径Y3+可提高其热膨胀系数(x=0.2),降低热扩散系数,并在高温下表现出类似于玻璃的超低热导率。1 000℃时,La1.6Y0.4Zr2O7的热导率为1.28 W/(m·K),平均热膨胀系数达到9.7×10–6/K。  相似文献   

10.
采用固相反应法制备了Sm_2YbTaO_7和La_2AlTaO_7氧化物,并研究了其热物理性能。Sm_2YbTaO_7和La_2AlTaO_7氧化物在20℃~1200℃范围内的平均热导率分别是0.45 W/(m·K)和1.71 W/(m·K),明显低于现役的氧化钇部分稳定氧化锆陶瓷(YSZ)。与La_2AlTaO_7相比,Sm_2YbTaO_7较低的热导率可以归因于其取代原子与基质原子之间较高的原子质量差别,Sm_2YbTaO_7较高的热膨胀系数则可归因于其A位与B位离子之间较低的电负性差别。Sm_2YbTaO_7和La_2AlTaO_7的热导率和热膨胀系数均满足热障涂层的要求,具有做为新型热障涂层表面陶瓷层材料使用的潜力。  相似文献   

11.
采用纳米氧化铝(Al_2O_3)为填料,制备不同配比的EPDM/Al_2O_3复合材料,并分别研究了复合材料的机械性能、导热系数和微观形貌。研究结果表明,随着Al_2O_3用量的增加,复合材料的力学性能表现得更为优异,导热系数也明显增加;纳米Al_2O_3的用量增加至100份,复合材料的导热系数增加至0.53 W/(m·K),压缩疲劳值增加的较少,大大降低了填料与橡胶基体之间的摩擦,因此表现出较小的热量积累。在同一配比下,填充纳米Al_2O_3的复合材料与其他填料的机械性能接近,导热系数明显增加,比炭黑N550填充复合材料的热导率高约32.3%,比聚氯乙烯(PVC)填充复合物的热导率高出57.7%。Al_2O_3填料在橡胶基体中可以均匀地分散,复合材料的交联网络较为完善,对于延长材料的使用寿命具有重要意义。  相似文献   

12.
采用固相反应法制备Li_2Zn_2(Mo(1–x)W_x)_3O_(12)陶瓷,研究了其相组成、显微组织及微波介电性能的变化规律。结果表明:当W6+取代量在0~0.1范围内,Li_2Zn_2(Mo(1–x)W_x)_3O_(12)陶瓷均显示出单相钒铁铜矿结构,形成了Li_2Zn_2(Mo(1–x)Wx)_3O_(12)固溶体。随着W~(6+)代量增加,Li_2Zn_2(Mo(1–x)W_x)_3O_(12)陶瓷的相对密度、介电常数和Q×f值均先增大后减小,其τ_f值则逐渐增大。当W6+取代量为0.025时,Li_2Zn_2(Mo_(0.975)W_(0.025))_3O_(12)陶瓷经630℃烧结2 h后具有较好的微波介电性能:ε_r=10.75,Q×f=630 95 GHz,τ_f=–65×10~(-6)/℃。  相似文献   

13.
用传统固相法制备48.3(0.61Ca Ti O_(3-x )Nd_(2/3)TiO_3)-51.7Mg TiO_3复合陶瓷。研究在1 320℃烧结时Nd~(3+)含量和保温时间对复合陶瓷微观形貌、相组成和介电性能的影响。结果表明:复合陶瓷的气孔率随Nd~(3+)含量的增加先下降后上升,相对介电常数εr和谐振频率温度系数τf随Nd~(3+)含量的增加而降低,品质因数Q·f值随Nd~(3+)含量的增加先上升后下降,之后再上升。当x0.48时,保温7 h所得样品的气孔率较低;x≥0.48时,保温4 h的样品气孔率较低。保温时间对材料谐振频率温度系数几乎没有影响。当烧结温度为1 320℃、保温4 h和Nd~(3+)含量为0.54时,样品性能较佳:εr=45.28,τf=73.76×10–6/℃,Q·f=35 002GHz。加入Nb~(5+)并复合Zn Al_2O_4后,得到的0.96(48.3(Ca_(0.60)Nb_(0.16)TiO_(3-0.54)Nd_(2/3)TiO_3)-51.7Mg Ti O_3)-0.04Zn Al2O4复合陶瓷的εr=41.24、τf=39.44×10–6/℃。  相似文献   

14.
借助于热分析仪,通过热重分析研究了(Al_2O_3–C)/Fe体系中的反应动力学特征。在氩气气氛和不同升温速率下,对(Al_2O_3–C)/Fe试样进行了热重实验。计算出不同阶段反应的活化能Ea、指前因子A和反应速率常数k,同时,提出了(Al_2O_3–C)/Fe体系反应的2个阶段,铁熔化前为第1阶段,主要是氧化铝和碳之间的固–固反应,铁熔化后为反应的第2阶段,主要为固–液反应阶段。在高温条件下,铁液的参与使得反应速率加快,促进了氧化铝碳热还原反应的进行。  相似文献   

15.
以电熔镁砂、α-Al_2O_3微粉、鳞片石墨、和炭黑为原料,制备低碳Mg O–Al_2O_3–C材料。通过改变原料混炼顺序来影响材料内原位尖晶石化反应,研究了原位尖晶石化反应对低碳Mg O–Al_2O_3–C材料结构与性能的影响。结果表明:试验温度下体系内固相反应、气–固反应均满足尖晶石生成的热力学条件。α-Al_2O_3微粉和炭黑经酚醛树脂造粒后以碳包覆Al_2O_3球体的形态存在材料中,体系内的尖晶石主要通过气–固反生成在包覆体表面,并阻碍Mg(g)向Al_2O_3球体内部扩散,导致1 400℃热处理后有Al_2O_3残余。尖晶石层有效地结合骨料与基质,提高了材料的力学性能。  相似文献   

16.
采用传统固相反应法制备Zn_(1–x)Ca_xTi_(0.6)Zr_(0.4)Nb_2O_8(x=0.05,0.10,0.20,0.30)微波介质陶瓷,研究了不同Ca~(2+)取代量对Zn_(1–x)Ca_xTi_(0.6)Zr_(0.4)Nb_2O_8陶瓷的物相组成、显微结构及微波介电性能的影响,利用X射线衍射仪、扫描电子显微镜和网络分析仪等对其晶体结构、微观形貌及微波介电性能进行表征。结果表明:Ca~(2+)取代Zn~(2+)会导致Ca Nb_2O_6第二相的形成,且随Ca~(2+)含量的增加,ZnTiNb_2O_8相含量减少;Ca Nb_2O_6相的含量增加,导致Zn_(1–x)Ca_xTi_(0.6)Zr_(0.4)Nb_2O_8陶瓷的介电常数和品质因数减小,谐振频率温度系数向正方向移动。当x=0.3时,Zn_(1-x)Ca_xTi_(0.6)Zr_(0.4)Nb_2O_8陶瓷在1 140℃烧结并获得最佳微波介电性能:ε_r=30.42,Q×f=47 280 GHz,τ——f=–25.37×10~(–6)/℃。  相似文献   

17.
用PP与纳米Al_2O_3熔融共混法制备复合材料,再用超临界CO_2间歇发泡法制备发泡材料,并对材料的结晶行为、力学性能、发泡行为和导热性能进行研究。结果表明,纳米Al_2O_3能提高复合材料的结晶和熔融温度,但会降低PP链段运动能力,当纳米Al_2O_3含量为7%时,复合材料的结晶度由纯PP的28.10%降至24.46%;纳米Al_2O_3具有刚性粒子的增强增韧协同效果,当纳米Al_2O_3含量为5%时,纳米Al_2O_3的骨架效应使得复合材料的拉伸强度达到33.9 MPa,继续提高其含量后复合材料的拉伸强度略微下降。由于纳米Al_2O_3的刚性粒子增韧效果,当纳米Al_2O_3含量达到7%时,复合材料的冲击强度可达到5.26 k J/m2。纳米Al_2O_3起到异相泡孔成核剂作用,加入5%的纳米Al_2O_3后,发泡材料的泡孔密度提高至2.18×107个/cm3,其热导率在纳米Al_2O_3含量为7%时达到0.107 W/(m·K)。  相似文献   

18.
采用熔融法制备了MgO–Al_2O_3–SiO_2(MAS)微晶玻璃,研究了SiO_2/MgO摩尔比对MAS微晶玻璃析晶和晶相转变的影响。结果表明:微晶玻璃初晶相为亚稳Mg_(0.6)Al_(1.2)Si_(1.8)O_6相,终晶相为堇青石相,随晶化温度升高,Mg_(0.6)Al_(1.2)Si_(1.8)O_6向堇青石相转变。SiO_2/MgO摩尔比对微晶玻璃析晶过程影响显著,随SiO_2/MgO摩尔比从2.5增加至3.6,晶相转变开始温度从1 000℃升高到1 150℃,晶相转变结束温度从1 050℃升高到1 180℃,Mg_(0.6)Al_(1.2)Si_(1.8)O_6相热稳定性提高,堇青石相析晶难度增大,晶相转变过程变慢。当SiO_2/MgO摩尔比为3.6时,1 080℃晶化后的微晶玻璃Vickers硬度达到最大10.4 GPa。  相似文献   

19.
以4%Y_2O_3、3%Y_2O_3–1%CeO_2、3%Y_2O_3–1%CaF_2和3%Y_2O_3–0.5%CeO_2–0.5%CaF_2(质量分数)为助烧剂,于1 860℃制备得到了AlN陶瓷。研究了不同助烧剂体系对AlN陶瓷物相组成、显微结构、烧结性能及热导率的影响。结果表明:所得样品的物相组成中均含有AlN与钇铝酸盐相,在含有CeO_2助烧剂的样品中还检测到少量的铈铝氧化物相;样品晶粒尺寸分布均在3~8μm之间。与添加一元及二元助烧剂相比,三元助烧剂的引入能更有效促进AlN陶瓷烧结致密化,强化其导热性能。添加三元助烧剂制备得到AlN陶瓷的体积密度为3.29 g/cm~3,气孔率为0.58%,热导率为184.8 W/(m·K)。  相似文献   

20.
以球形Al_(2)O_(3)为填料,高流动性聚酰胺(PA)6为基体,利用双螺杆挤出熔融共混技术,制备了PA 6/Al_(2)O_(3)导热复合材料,并研究了Al_(2)O_(3)含量和粒径对复合材料性能的影响。结果表明:随着亚微米Al_(2)O_(3)含量的增加,填料形成了更加发达的导热通道,当Al_(2)O_(3)质量分数为80%时,复合材料的导热系数达到1.510 W/(m·K),较纯PA 6提升了439%,同时复合材料的弯曲强度提高了60%,弯曲模量提高了367%,结晶温度提高了16.1℃;添加Al_(2)O_(3)不仅改善了复合材料的结晶性能,还提高了复合材料的导热性能和力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号