首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了弥补现有变压器故障诊断方法在油中气体分析(DGA)特征量选取和诊断模型方面的不足,采用IEC三比值法中的3种气体比值作为变压器故障诊断的特征量。同时从含有8种油中溶解气体中任意3种及以上的共254种气体组合中筛选出准确率最高的3组最优DGA特征气体组合,将其作为对照组特征量。然后采用帝国竞争算法(ICA)优化支持向量机的变压器故障诊断模型(ICA-SVM),与标准支持向量机(SVM)法、粒子群优化向量机(PSO-SVM)以及IEC三比值法进行对比。实例结果表明:三气体比值特征量相比3组最优DGA气体组合,故障识别准确率提高了10%左右;ICA-SVM故障诊断模型相比标准SVM法、PSO-SVM和IEC三比值法故障识别准确率提高了7%~35%;综合三比值特征量与ICA-SVM故障诊断模型的准确率为89.3%,相较其他几种方法准确率提升了7%~35%。结果验证了该方法的有效性和准确性。  相似文献   

2.
提出了一种基于帝国殖民竞争算法优化支持向量机的变压器故障诊断模型。对支持向量机进行了非线性和多分类变换,构建了k-折平均分类准确率目标函数,建立了帝国殖民竞争算法优化支持向量机的非线性多分类模型,结合交叉验证原理对变压器进行了故障诊断。故障诊断结果表明,所提方法的平均测试准确率优于标准支持向量机和粒子群优化算法优化支持向量机(准确率分别为77.08%、57.97%和61.96%),验证了所提模型的有效性。采用UCI基准数据集对所提模型进行分类测试,结果表明所提模型在解决分类问题上具有较好的泛化性。  相似文献   

3.
4.
介绍了基于粗糙集理论(RS)和支持向量机(SVM)的变压器故障诊断方法,使用这种方法可提高训练速度和诊断准确率。  相似文献   

5.
针对基于DGA的变压器故障诊断方法在变压器故障诊断中存在的不足,提出了基于粒子群优化支持向量机的变压器故障诊断方法。建立支持向量机分类机的变压器故障诊断模型,并用粒子群算法优化参数,利用libSVM工具箱在MATLAB软件平台上训练支持向量机分类机,用训练良好的支持向量机诊断110kV立星变电站变压器故障状况。结果证明,采用基于粒子群优化支持向量机的变压器故障诊断结果与实际相符。此方法能够提高变压器故障诊断的准确率。  相似文献   

6.
利用支持向量机进行故障诊断,提出了一种基于决策树的多类支持向量机,并在变压器绝缘故障诊断中检验了它的有效性。  相似文献   

7.
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好地解决了小样本、高维数、非线性等学习问题。支持向量机分类性能的好坏很大程度依赖于核函数与核参数的选取。目前常用的参数寻优方法有网格搜索法、遗传算法和粒子群优化算法。本文提出了一种基于支持向量机多分类的电力变压器故障诊断模型,以变压器油中5种特征气体作为输入,5种故障状态作为相应的输出,选用高斯径向基核函数,使用网格搜索法获取最优参数C、g。经实验表明,该模型准确率为83.3%,具有较好的实用性。  相似文献   

8.
提出了一种基于支持向量机、粗糙集和属性约简集选择的变压器故障诊断方法,以二值分类法为基础,构建了基于支持向量机的多值分类器。利用领域知识对变压器连续性色谱数据进行离散化,采用粗糙集进行约简,并用约简集选择算法提取其重要特征子集,建立特征气体比值与故障类型的映射关系,采用粒子群算法对支持向量机核参数进行优化,达到了故障诊断的目的。仿真结果表明,该方法对变压器故障诊断具有较高的诊断率。  相似文献   

9.
基于可靠性数据分析和最小二乘支持向量机对电力变压器故障进行了诊断,并给出了实例分析。  相似文献   

10.
针对单一的特征气体或特征气体比值作为DGA特征量无法全面反映变压器故障分类的问题,本文从混合DGA特征量中优选出一组DGA新特征组合为输入,建立改进磷虾群(Improved Krill Herd,IKH)算法优化支持向量机(Support vector machine,SVM)的变压器故障诊断模型进行故障诊断。将SVM的c和s与11种候选特征量进行二进制编码,利用遗传算法结合支持向量机对DGA特征量进行优选,得到一组最优DGA新特征组合;利用IKH算法对SVM的参数进行优化,同时结合交叉验证原理构建IKH算法优化SVM的变压器故障诊断模型。基于IEC TC 10的诊断结果表明:与DGA全数据、三比值特征量相比,新DGA特征组合的故障诊断准确率分别高出10.14%和30.2%;IKHSVM准确率也要高于标准SVM和GASVM(分别为73.87%、81.13%和86.27%),说明该方法能有效诊断变压器故障。  相似文献   

11.
针对变压器多故障问题,提出了基于Mercer核函数的欧式距离查询策略算法,并建立了基于Karhunen-Loeve(K-L)特征提取与支持向量机的变压器故障诊断模型,利用K-L变换提取信号的特征值,最后通过支持向量机学习算法完成对信号的选择与分类。通过实例应用表明:所训练的SVM分类器较之直接任意选取训练样本作为训练集的传统方法具有更高的诊断率。  相似文献   

12.
提出用支持向量机作为分层决策电力变压器故障诊断模型。首先通过相关统计分析,选择典型油中气体作为支持向量机输入参数,然后在深入发掘油中气体所含故障信息基础上,利用典型故障气体的相对含量在高维空间的分布特性进行变压器故障类型诊断。该方法基于小训练样本条件下寻求最优解,具有很好的推广能力及一致性等优点,还适用 于变压器典型故障数据少的特点。文中还给出了两种不同支持向量机核函数分类结果的比较。为了提高故障诊断的正判率,该模型同时在相关性强的特征气体之间,利用K-近邻搜索聚类在最优分类面附近对分类结果进行精确逼近,使分层决策模型可靠性显著改善。计算结果表明,该模型具有很好的分类效果。  相似文献   

13.
基于粒子群优化支持向量机的变压器故障诊断   总被引:3,自引:4,他引:3  
为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类捕食行为的研究。这种方法不仅具有很强的全局搜索能力,而且容易实现,适合于SVM参数优化。变压器故障诊断实例分析结果证明,PSO-SVM的诊断精度高于IEC三比值法、BP神经网络、普通的SVM,PSO-SVM适用于电力变压器故障诊断。  相似文献   

14.
针对电力变压器故障诊断中状态量判断指标过于绝对、智能算法准确率受参数影响等问题,在分析电力变压器故障的基础上,提出将支持向量机(Support Vector Machine,SVM)和细菌觅食算法(Bacterial Foraging Algorithm,BFA)相结合用于电力变压器的故障诊断方法。通过细菌觅食算法的寻优能力找到最优的支持向量机惩罚因子和核参数,提高了故障诊断能力。通过仿真和实例进行对比分析,验证了该方法的优越性。结果表明,相比于粒子群优化,细菌觅食算法具有更好的寻优能力。基于BFA-SVM的故障诊断模型,相比于改进前,具有更高的准确性、鲁棒性和寻优能力,故障诊断准确率相比于粒子群优化提高了7.50%,具有一定的实用价值。  相似文献   

15.
基于最小二乘支持向量机的变压器故障诊断   总被引:1,自引:0,他引:1  
介绍了一种基于最小二乘支持向量机(LS-SVM)的电力变压器故障诊断方法,将样本数据进行归一化处理,以绝缘油中特征气体种类及其含量为依据建立变压器故障诊断LS-SVM模型,对模型中的核参数σ与惩罚参数C进行优化,并将测试样本输入训练好的LS-SVM模型,得到诊断结果。实例结果分析表明,LS-SVM将原先的非线性问题转化为求解线性问题,即使在小训练样本的前提下,也能获得更为准确的诊断结果。  相似文献   

16.
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好解决了小样本、高维数、非线性等学习问题.分析比较了目前常用的几种支持向量机多分类方法,并将其应用于变压器故障诊断中.通过实验表明,树形支持向量机多分类模型比较适用于变压器故障诊断.  相似文献   

17.
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好解决了小样本、高维数、非线性等学习问题。分析比较了目前常用的几种支持向量机多分类方法,并将其应用于变压器故障诊断中。通过实验表明,树形支持向量机多分类模型比较适用于变压器故障诊断。  相似文献   

18.
以变压器油中溶解气体的相关信息作为特征向量,首次将基于欧氏聚类的支持向量机多分类模型应用于变压器故障诊断中。该组合模型以变压器状态类别间的欧氏距离为依据,构建支持向量机多分类模型。实验表明,该方法能够避免多分类模型组建的盲目性,同时能有效地对变压器进行故障诊断。  相似文献   

19.
为了解决在变压器故障诊断时复杂难辨的问题,提出了利用模糊支持向量机构建变压器故障诊断模型的方法。该方法是在支持向量机(SVM)的基础上引入模糊度隶属函数,从而有效消除噪声和野点对诊断结果的影响。通过模糊C均值算法(FCM)求取模糊支持向量机的隶属度,对所得样本进行预处理,然后利用交叉验证和网格搜索相结合的方法对支持向量机进行参数寻优。实验表明,该方法比改良IEC比值法和传统支持向量机法具有更高的准确率,更适用于变压器故障诊断。  相似文献   

20.
电力变压器在整个体系中处于十分重要的地位,部件的运行概况和整个电网的稳定性具有密切联系。对电力变压器的故障诊断,工程实践中广泛采用的是油中溶解气体法,由于变压器故障样本比较少,属于小样本数据,而支持向量机能够较好地解决小样本的多分类问题,因此提出利用改进鱼群算法对支持向量机寻优得到全局最优解,得到具有最佳参数的支持向量机模型。通过数据实例分析得出,改进鱼群算法故障诊断模型比粒子群算法故障诊断模型和改良三比值法分类准确率高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号