首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用共沉淀方法并结合热处理技术制备了CoNi O_(2)/Ti_(3)C_(2)Tx复合材料。使用扫描电子显微镜、X射线衍射、X射线光电子能谱、氮气吸脱附测试、循环伏安法、恒流充放电法和电化学阻抗测试对所制备样品进行表征。结果表明:CoNiO_(2)/Ti_(3)C_(2)Tx质量比为30:1的复合材料具有最佳的电化学性能,在1 A/g的电流密度下具有389 F/g的比电容,约为Ti_(3)C_(2)Tx比电容的6倍;当电流密度为20 A/g时,其比电容为309 F/g;在电流密度为10 A/g时,经过1500次充放电循环后,电容保持率为82%。  相似文献   

2.
分别以尿素和氨水为沉淀剂,采用热溶剂法制备了多孔的花状NiMn2O4和颗粒状NiMn2O4纳米电极材料,采用 X射线衍射仪、扫描电镜、透射电镜和N2 吸附-脱附等手段对NiMn2O4材料的物相、形貌结构和孔径分布进行了表征,并通过循环伏安、恒电流充放电、交流阻抗等方法测试了所制备材料的电化学性能。研究了沉淀剂对NiMn2O4材料形貌、微观结构及电化学性能的影响。结果表明:以尿素为沉淀剂的NiMn2O4是由纳米片组成的花状结构,纳米片厚度为50~60nm,比表面积为104m2/g。在 1A/g 电流密度下比电容为1614F/g,在5A/g电流密度下,尿素为沉淀剂的花状NiMn2O4材料经1000次恒电流充放电后其比电容可达初始值的89%。以氨水为沉淀剂的多孔NiMn2O4为直径约30nm的纳米颗粒结构,颗粒间团聚严重,比表面积为91m2/g。在1A/g电流密度下比电容为1147F/g,在5A/g电流密度下,氨水为沉淀剂的颗粒状NiMn2O4材料经1000次恒电流充放电后其比电容可达初始值的80%。尿素为沉淀剂的花状NiMn2O4具有优越的超级电容性能。  相似文献   

3.
为了改善活性炭纤维的电化学性能、提高比电容,以硝酸镍和硝酸钴为金属源、尿素为碱源,采用水热法对一步活化法制备出的PAN基活性炭纤维(ACF)进行修饰,使其表面均匀负载海胆状的镍钴氧化物(ACF/NiCo_2O_4),通过扫描电镜、X射线衍射等对样品进行形貌和成分表征,采用三电极体系对材料进行电化学性能测试。结果表明,在1 A/g的电流密度下,其质量比电容达到469. 4 F/g,而电压降只有-0. 004 5 V,恒流充放电循环5 000圈后,其电容保持率为97. 87%,证明ACF/NiCo_2O_4材料具有较大的比电容和良好的循环稳定性,可用作超级电容器电极材料。  相似文献   

4.
ZnCo_2O_4(ZCO)由于其良好的电化学活性而被备受关注。采用水热法和热退火两步法成功地在镍泡沫上制备了ZnCo_2O_4纳米线。利用扫描电镜(SEM)和X射线衍射谱(XRD)对ZnCo2O4的形貌和结构进行了表征。这种独特的一维结构可以为电子和离子提供有效的传输途径。在三电极系统下,通过循环伏安测试和恒电流充放电测试表明,在120℃水热条件下所制得的ZCO-120的电容性能最佳,在0.5 A/g的电流密度下,其比电容达到511.3 F/g。在10.0 A/g的电流密度下经1 000次循环充放电后,其比电容仍然保持95.8%,表明其具有较好的循环稳定性。同时,将ZCO-120作为正极,活性炭作为负极组装成不对称超级电容器,其电势窗可达到1.6 V,在功率密度为400 W/kg时,能量密度可达14.4 Wh/kg。证明了ZnCo_2O_4可以作为先进的超级电容器材料。  相似文献   

5.
采用共沉淀方法并结合热处理技术制备了CoNi O_2/Ti_3C_2T_x复合材料。使用扫描电子显微镜、X射线衍射、X射线光电子能谱、氮气吸脱附测试、循环伏安法、恒流充放电法和电化学阻抗测试对所制备样品进行表征。结果表明:CoNiO_2/Ti_3C_2T_x质量比为30:1的复合材料具有最佳的电化学性能,在1 A/g的电流密度下具有389 F/g的比电容,约为Ti_3C_2T_x比电容的6倍;当电流密度为20 A/g时,其比电容为309 F/g;在电流密度为10 A/g时,经过1 500次充放电循环后,电容保持率为82%。  相似文献   

6.
以三维泡沫镍(NF)为模板,在不添加模板剂的条件下,通过电沉积法沉积石墨烯(G),再采用水热合成制备纳米片二氧化锰(Mn O_2),得到自支撑电极复合材料G/Mn O_2/NF,改善其作为电极材料的电化学性能。用X射线衍射(XRD)、拉曼光谱(Raman)和扫描电子显微镜(SEM)对复合材料的微观结构和表面形貌进行分析,通过循环伏安(CV)、恒电流充放电(GCD)、交流阻抗(EIS)测试了电极复合材料的电化学性能。结果表明:在电流密度为1 A/g的条件下,复合电极材料的比电容达到722 F/g,经过1 000次循环后比电容保持率为97%。  相似文献   

7.
利用微波辅助法快速制备了三维花状NiCo_2S_4纳米材料,纳米花由小纺锤状纳米粒子相互交错组成。通过电化学法测试了该纳米材料在6 mol/L KOH溶液中的电容行为。结果表明,作为电极材料该纳米材料具备良好的电容性能;在电流密度为2 A/g时比电容量最高达到了975 F/g;在功率密度为400 W/kg时,NiCo_2S_4电极的能量密度为21. 7 Wh/kg;当1 000圈恒电流充放电循环后,比电容仍可保持其初始电容的93. 1%。  相似文献   

8.
采用水热法,通过控制反应时间制备出不同形貌和尺寸的Co_3O_4材料。利用XRD和SEM对其结构和形貌进行表征,采用循环伏安、恒电流充放电和交流阻抗等方法测试了其电化学性能。结果表明,随着反应时间的延长, Co_3O_4材料的晶粒尺寸增大,形貌由不规则颗粒状变为正立方体,其比电容不断降低。在电流密度为0.2 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为153.3 F·g~(-1)、 99.3F·g~(-1)和51.1 F·g~(-1)。当电流密度从0.2 A·g~(-1)增大到1.8 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为96.3 F·g~(-1)、 91.3 F·g~(-1)和27.1 F·g~(-1),其比电容保持率分别为62.8%、 91.9%和53.0%。水热反应5 h所制备的Co_3O_4材料具有最好的比电容。  相似文献   

9.
以KMnO4和醋酸铵为原料,无需额外的模板剂,采用简单水热法制备超长纳米线状MnOOH,利用X射线衍射仪、扫描电子显微镜、透射电子显微镜、热重分析,循环伏安法、恒流充放电法和电化学阻抗法对合成样品进行表征。结果表明:MnOOH纳米线的长度在10μm以上,直径约为20 nm,在电流密度为1 A/g时,比电容为285 F/g;在电流密度为10 A/g时,4 000次充放电循环后电容保持率达96.2%;MnOOH纳米线材料可以形成出色的电子传输通道,表现出较为优异的超电容性能,作为超级电容器的电极材料具有广阔的应用前景。  相似文献   

10.
采用水热法以不同的填装度分别在泡沫镍和碳纤维基底上制备出了不同形貌的Co_3O_4。运用X射线衍射、红外光谱和扫描电镜对产物的结构和形貌进行表征。结果表明,在水热反应体系中,通过改变装填度大小,可以制备出相同物相、不同形貌的产物。通过循环伏安法、恒流充放电和交流阻抗法对泡沫镍基底Co_3O_4电极材料的电化学特性进行表征。结果表明,在填装度为70%时制备出的Co_3O_4均匀纳米簇阵列,表现出更好的电容特性。在2 mol/L的KOH电解液中,1 A/g的电流密度下,其比电容为961 F/g;当电流密度增至20 A/g时,比电容保持率为76%。  相似文献   

11.
通过硝酸铈的乙醇溶液燃烧一步合成了含有微量碳的二氧化铈纳米材料(C-CeO_2)。电化学测试结果表明,C-CeO_2纳米材料在1 A/g电流密度时的比电容为125 F/g,是相同条件下纯CeO_2纳米材料比电容(55 F/g)的2.3倍。另外,C-CeO_2纳米材料在循环充放电测试1 000次后的比电容保持率高达83%。  相似文献   

12.
金小青  邢佳斌  任瑞鑫  齐亚娥 《化学试剂》2019,41(10):1031-1036
以钼酸钠、氯化钴为原料,采用简单化学沉淀法制备前驱体CoMoO_4,然后将CoMoO_4和Na_2S通过离子交换反应合成双金属硫化物CoMoS_4。采用X射线衍射(XRD)、扫描电镜(FESEM)、比表面积测试(BET)表征了产物的组成、结构和形貌,用循环伏安、恒电流充放电等测试方法对电极材料的电化学性能进行了研究。结果表明,当电流密度为1 A/g时,CoMoS_4电极材料的比电容值为456 F/g,是Co-S的2. 8倍,Mo-S的1. 4倍;且1 000次循环后,比电容仍保持88%,电极材料显示出良好的电化学性能。  相似文献   

13.
《山东化工》2021,50(8)
采用废弃生物质稻谷壳为原料,利用简单的降解和活化过程,将其转化为具有较高附加值的储能碳材料。实验结果发现:经水热降解12 h再经化学活化3 h后所得稻壳碳材料比表面积可达1036 m~2/g。在0.2 A/g的电流密度下比电容为441 F/g,在20 A/g的高电流密度下比电容仍可达226 F/g,表现出较高的能量密度和功率密度。经过10000次充放电循环,电容保持率为92.92%,体现出优异的循环稳定性。本论文中生物质碳材料的制备方法,可为废弃农业生物质的高附加值资源化利用提供一条切实可行的途径。  相似文献   

14.
以废弃醋糟为碳源,通过氢氧化钾活化制备多孔性、高比表面积的醋糟衍生碳,再采用水热法制备出双金属氢氧化物/醋糟衍生碳(NiCo-LDH/C)复合电极材料。利用循环伏安(CV)、恒流充放电(GCD)、XRD以及场发射扫描电镜(SEM)等测试方法表征复合材料的形貌和性能。结果表明,在10 A/g的电流密度下该材料的比电容可达915 F/g; 1 000次充放电后电容量仍保持82.5%。NiCo-LDH/C复合材料在能量存储领域具有巨大应用潜力。  相似文献   

15.
通过简单的高温固相法制备了(MnCoNiCu)MoO4中熵钼酸盐,对其微观形貌、晶体结构和化学组成进行了深入研究。将其作为超级电容器电极材料,进行了相关电化学性能测试。测试结果表明,在1 A/g的电流密度下,(MnCoNiCu)MoO4中熵钼酸盐的比电容值为438.3 F/g;在15 A/g的电流密度下,经过10 000次循环充放电,初始比电容保持率为83.3%。证明了(MnCoNiCu)MoO4中熵钼酸盐材料在超级电容器中的潜在应用。  相似文献   

16.
以玉米芯为原料,经Zn Cl_2一步活化法制备超级电容器用电容炭电极材料。采用低温N_2吸附、扫描电镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)及X射线光电子能谱(XPS)等手段系统表征电容炭的微观结构及表面性质,并利用恒流充放电、循环伏安和漏电流等测试手段研究其在无机电解液体系(KOH)中的电化学性能。研究表明:在Zn Cl_2/玉米芯浸渍比为2:1、700℃的条件下活化1h可制备出比表面积为1340m~2/g、总孔容为1.135cm~3/g、中孔率高达97.7%的玉米芯电容炭。将其用作电极材料表现出良好的电化学特性,在50m A/g的电流密度下质量比电容为159F/g,2500m A/g电流密度下比电容仍可达137F/g,1000次循环后比电容保持率为92.5%,漏电流仅为1.9μA。结果表明:玉米芯电容炭具有良好的倍率特性和循环性能,是一种理想的电化学电容器用电极材料。  相似文献   

17.
以水溶性聚磷酸铵为致孔剂,苯乙烯为碳源,制备出分级多孔炭(HPC),然后经水热法制备得到二氧化锰包覆多孔炭复合材料。采用X射线衍射分析、扫描电子显微镜、热重分析和物理吸附等对所得材料表面形貌以及结构性能进行表征;采用循环伏安法、恒流充放电、交流阻抗和循环稳定性测试对其进行电化学性能分析。结果表明,当KMnO_4∶HPC=4∶1时,所得复合材料中二氧化锰的含量为55%时,电容性能最好。在0.2 A/g的电流密度下,1 mol/L Na_2SO_4电解液的三电极体系中测试,该复合材料比电容最高可达到216 F/g,且循环1 000次后,比容量保持81%。复合材料优异的电容性能归功于分级多孔炭发达的孔隙结构和均匀的二氧化锰包覆。  相似文献   

18.
路露  周小红  徐律  余乐平  张鑫 《硅酸盐学报》2022,50(7):1909-1918
利用高导电性的氮化钛纳米线作为聚苯胺的生长基质,有效减少电极材料的电荷传输电阻,提升聚苯胺的超级电容储能性能。以碳纤维作为柔性基底,采用晶种辅助水热结合电化学聚合法制备了柔性聚苯胺/氮化钛纳米线电极材料(PANI/Ti N),电极材料呈现高度有序的同轴核壳纳米线结构,且纳米线之间彼此分离,有利于电解液离子的传输,提升储能性能。电流密度为1 A/g时,比电容为403 F/g;电流密度从0.5 A/g增加到10.0 A/g时,比电容保持率为初始容量的53.4%,电流密度为5 A/g时,循环充放电1 000次后PANI/Ti N的电容保持率为79.1%,与PANI相比均有较大提升,表明PANI/Ti N具有较好的电化学储能性质。以PANI/Ti N电极材料为电极构建柔性全固态对称型超级电容器(PANI/Ti N//PANI/Ti N)考察其应用性。PANI/Ti N//PANI/Ti N柔性超级电容器在电流密度为1 A/g时,比电容可达100.2 F/g,且在不同角度弯曲后比电容无明显衰减。当功率密度为500 W/kg时,能量密度可达50.1 W·h/kg,且1个单元的该超级电容器可驱动红色...  相似文献   

19.
在CoS纳米花基底上生长NiS合成层级NiS@CoS复合微米花材料,微米花由许多不规则纳米片交错组装而成。该微观形貌可缩短电子传输途径,使材料不易团聚,提高循环稳定性。结果表明,层级NiS@CoS复合微米花具有优良的超级电容器电极性能,在6 mol/L KOH溶液中,电流密度为2 A/g时比电容量最高达到1 205 F/g;复合材料电极在功率密度为400 W/kg时,能量密度可达26.8 Wh/kg; 1 000圈恒电流充放电循环后,比电容仍可保持其初始电容的91.27%。表明制备的层级NiS@CoS复合微米花可用作超级电容器电极材料。  相似文献   

20.
李学良  张波  肖正辉  张扬  陈飞 《广东化工》2013,40(6):8-9,16
通过乳液聚合制备具有类似金属导电性和超电容功能的氧化石墨烯/聚苯胺(GO-PANI)复合材料,聚合在组成为水,乙醇,二甲苯和十二烷基苯磺酸(DBSA)的乳液中进行。采用红外光谱对材料进行了表征,采用循环伏安法、交流阻抗和恒电流充放电进行了材料电化学性能的测试。结果表明氧化石墨烯/聚苯胺呈现高的超电容性能。在0.5 A/g电流密度下,摩尔比为3∶7材料的比电容高达444 F/g,远远超过了氧化石墨烯的比电容(134 F/g)。在50 mV/s下循环1000次,GO-PANI(3/7)仍呈现出高的比电容,达到412 F/g,仅减少7.2%。相对于纯聚苯胺比电容下降41.7%,复合材料GO-PANI具有优良的稳定性,显著提高复合材料容量保持率和循环寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号