首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分别采用凝胶浇注法和甘氨酸–硝酸盐法制备La0.6Sr0.4Co0.2Fe0.8O3–δ(LSCF)粉体与Sm0.2Ce0.8O1.9(SDC)粉体,随后制备出不同比例的LSCF–SDC复合阴极。用X射线衍射分析粉体的化学稳定性,用扫描电子显微镜观察复合阴极的微观结构,在500~800℃范围内测量其热膨胀系数和电导率。采用丝网印刷法将LSCF–SDC涂覆在SDC电解质片上,在1100℃烧结4h。用交流阻抗法在600~800℃范围内测量不同成分的LSCF–SDC复合阴极和SDC电解质的交流阻抗谱。结果表明:LSCF和SDC粉体具有良好的化学相容性,烧结体具有多孔结构,LSCF–SDC复合阴极与SDC电解质可形成良好的接触界面。SDC的加入在降低阴极材料的热膨胀系数的同时还保持了其本身较高的电导率,在中温范围内,电导率达到500S/cm以上。复合阴极的极化电阻随着SDC的含量增加而减小,当SDC含量为30%时,复合阴极的极化电阻最小,在700℃空气中测试得到的界面电阻为0.32Ω·cm2。  相似文献   

2.
分别以固相反应法和甘氨酸法合成La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3(LSCF)阴极粉体和Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)电解质粉体。机械混合后,经压制烧结得到多孔LSCF-SDC复合阴极,通过水热法对多孔LSCF-SDC阴极浸渍Co_3O_4。研究Co_3O_4浸渍后的复合阴极的微观形貌和电化学性能。实验结果表明,对多孔LSCF-SDC阴极浸渍含Co盐溶液,经700℃焙烧后,在阴极表面形成针状Co_3O_4颗粒。浸渍处理使700℃下LSCF-SDC复合阴极的界面阻抗由0.49Ω·cm~2降低至0.19Ω·cm~2,阴极的氧还原反应活化能由1.52 eV降低至1.03 eV。此外,Co_3O_4浸渍阴极使700℃下单电池的功率密度由180 mW·cm~(-2)提高至260 mW·cm~(-2)。实验结果揭示,通过Co_3O_4浸渍,可有效提高LSCF-SDC复合阴极和燃料电池的电化学性能。  相似文献   

3.
以三氧化二钐、浓硝酸、硝酸铈铵、柠檬酸为原料,采用溶胶-凝胶法低温(900℃)制备Ce_(0.8)Sm_(0.2)O_(2-α)(SDC),低于通常高温烧结温度(1400℃),并与(Li/K)_2CO_3共熔体进行复合。采用DSC-TGA确定制备Ce_(0.8)Sm_(0.2)O_(2-α)的烧结温度。XRD结果表明,(Li/K)_2CO_3与Ce_(0.8)Sm_(0.2)O_(2-α)复合后没有发生化学反应。SEM图像表明,SDC粒径均匀一致,(Li/K)_2CO_3作为SDC颗粒黏结剂均匀覆盖SDC颗粒表面。采用电化学工作站研究了复合电解质在400~600℃下干燥氮气气氛中的电导率。结果表明,温度为600℃时,复合电解质在干燥氮气气氛中的电导率达到最大值3.3×10~(-2)S/cm,高于单一二氧化铈材料在相同条件下的电导率。氧分压与电导率关系曲线表明,复合电解质具有良好的氧离子导电性。H_2/O_2燃料电池性能测试表明复合电解质Ce_(0.8)Sm_(0.2)O_(2-α)-(Li/K)_2CO_3(SDC-SG-LK)在600℃开路条件下的电解质阻抗、极化阻抗分别为3.13W·cm~2、0.81W·cm~2,最大输出功率密度为130m W/cm~2。  相似文献   

4.
通过柠檬酸-EDTA络合法制备固体氧化物燃料电池阴极材料La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)粉体。以Sm0.2Ce0.8O1.9(SDC)为电解质,制备了LSCF/SDC/LSCF对称电极。采用浸渍法在LSCF/SDC/LSCF两侧浸渍La(NO3)3、Ni(NO3)2、Fe(NO3)3混合溶液,850℃烧结后得到表面修饰后的阴极材料。研究了浸渍烧结后表面修饰阴极材料的物相结构特征、电化学交流阻抗、电化学催化活性及单电池输出性能。结果表明:通过浸渍法在LSCF阴极表面形成了与LSCF结构相似的La0.62Sr0.38Ni0.03Co0.19Fe0.78O3-δ(LSNCF)固溶体,在表面产生的纳米颗粒提升了阴极材料对O2的吸附解离能力,并表现出较低的极化阻抗,在800℃时LSNCF阴极材料的极化面电阻为0.083Ω·cm2,在800℃连续工作7 200 min后,LSNCF阴极材料对称电池极化阻抗为0.117Ω·cm2。以Ni-SDC为阳极,SDC为电解质,LSNCF为阴极组装阳极支撑单电池,在750℃时最大功率密度为693 m W/cm2。  相似文献   

5.
分别采用机械混合法和一步溶胶-凝胶法制备摩尔比为1:1的Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)-BaCe_(0.8)Sm_(0.2)O_(2.9)(BCS)复合电解质,研究了不同制备方法对复合电解质SDC-BCS的显微结构以及电化学性能的影响。结果表明:相比于机械混合法,一步溶胶-凝胶法制得的复合电解质中的SDC和BCS两相的分布更加均匀;且与单相电解质SDC相比,复合电解质中SDC和BCS的相界能够为质子和氧离子提供传输通道,有利于晶界电导率的提高。另外,一步溶胶-凝胶法制备的复合电解质制作的单电池,具有较高的开路电压和最大功率密度,在700℃时分别达到0.914 V和0.281 W/cm~2。  相似文献   

6.
采用EDTA-甘氨酸法制备了SmBaCo_(2-x)Cu_xO_(5+δ)(SBCC_x,x=0,0.5,1.0,1.5,2.0)阴极材料,研究不同Cu掺杂量对SBCC_x材料的晶体结构、热膨胀系数、电导率及电化学性能的影响。结果表明,在SmBaCo_2O_(5+δ)阴极材料的Co位掺入Cu,材料的晶胞体积逐渐变大,热膨胀系数将随着Cu的加入而逐渐降低,与Sm_(0.2)Ce_(0.8)O_(1.9)(SDC)电解质热匹配性良好。以SBCC1.0为阴极,SDC为电解质,N-SDC为阳极支撑的单电池在750℃时输出功率达到346 mW·cm~2,这得益于SBCC1.0在750℃时电导率值为133S·cm~1和较小的极化电阻0.154Ω·cm~2。  相似文献   

7.
La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)钙钛矿型复合氧化物具有优良的电子-离子混合导电性能,是目前温固体氧化物燃料电池(SOFC)最理想中的阴极材料之一。以水和乙醇作为溶剂,按照La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)的元素摩尔比为6∶4∶2∶8的元素比配制溶液,采用超声喷雾裂解方法,在700℃时通过喷雾裂解制备球形LSCF粉体。该粉体和GDC电解质按照7∶3的比例,制备阴极浆料,涂于NiO-GDC||GDC半电池电解质表面,并在1150℃烧结制备电池阴极。通过SEM、XRD等表征手段研究粉体以及电池阴极结构,并研究了LSCF-GDC复合阴极材料的电性能。研究表明,该电池在750℃条件下的电池性能达到了553 m W·cm~(-2),电池性能比固相法制备的阴极粉体性能高出111 m W·cm~(-2),展现了较好的电催化活性。  相似文献   

8.
固体氧化物燃料电池连接体中存在铬元素,会对阴极材料产生毒化作用,严重影响了阴极的电化学性能.采用浸渍法制备了用于固体氧化物燃料电池的La0.8Sr0.2Co0.2Fe0.8O3-δ(LSCF)-Gd0.2Ce0.8O1.9(GDC)复合阴极,以电化学测试为基础,结合扫描电子显微镜、电感耦合等离子光谱、X射线光电子能谱等...  相似文献   

9.
采用溶胶–凝胶法制备了La0.8–xBaxSr0.2Co0.8Fe0.2O3–δ(LBSCF)阴极粉体。对LBSCF的晶体结构、材料表面的化学状态、烧结体的断面微结构及电导率进行了表征。用交流阻抗谱法在550~700℃范围测试了LBSCF-30%SDC(Sm0.2Ce0.8O1.9)复合阴极的电化学性能。结果表明:LBSCF粉体主晶相为六方晶系钙钛矿结构,存在少量的第二相。XPS结果显示,Ba2+掺杂不影响A位离子(La3+、Ba2+、Sr2+)的价态,但对B位离子的价态有不同的影响:x=0.10的样品中,钴离子以Co3+和Co4+混合价态存在,其余样品中以低氧化态(Co3+和Co2+混合价)或Co3+价存在;铁离子以高氧化态(Fe3+和Fe4+)存在。在500~700℃空气气氛中,LBSCF的电导率均超过700 S/cm,在同一温度下,电导率随着Ba2+掺杂量的增加而增大。x=0.20的样品在500℃时,电导率最大可达1.59×103 S/cm。随着Ba2+含量增加,极化电阻减小,x=0.20时,复合阴极LBSCF-30%SDC的极化电阻最小,700℃时的极化电阻为0.20?·cm2。  相似文献   

10.
通过溶胶凝胶-自燃烧法制备了阴极La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3(LSCF)粉体。以NiO-GDC||GDC为阳极和电解质上并在GDC电解质表面,制备了GDC-LSCF复合阴极。采用离子浸渍法在GDC-LSCF阴极内部制备了IrO_2功能材料,并比较了在不同温度和浸渍量下燃料电池的输出效果。采用XRD、SEM和电化学工作站等表征方法对该电池和复合阴极进行研究。研究表明通过离子浸渍法在GDC-LSCF复合阴极骨架的表面,形成了大量的IrO_2纳米颗粒,该纳米颗粒大幅度增加了三相反应界面的长度。当IrO_2浸渍量为0.5 wt%的时候,燃料电池的性能在750℃的功率密度为492 m W·cm~(-2),电化学阻抗为1.30Ω·cm~2,该电池表现出较好的性能和较低的阻抗,这与IrO_2较好的电子电导和催化活性有关。该电池在中温条件700℃、750℃和800℃的电池功率分别为493 mW·cm~2、581 mW·cm~2、632 m W·cm~2,具有较好的中温操作特性。  相似文献   

11.
采用甘氨酸-硝酸盐法(GNP)合成SmBaCo2O5+δ(SBCO)阴极材料和Ce0.8Sm0.2O1.9(SDC)电解质材料,制备不同比例的SBCO-SDC复合阴极,考察SDC含量对复合阴极的热膨胀、电导率和电化学性能的影响。结果表明,SBCO与SDC在1100℃混合煅烧未发生明显的化学反应,两者之间具有良好的化学相容性。SDC的加入可有效改善复合阴极的热膨胀性能,随着SDC含量的增加,SBCO-SDC复合阴极的热膨胀系数(TEC)逐渐减小,同时其电导率也逐渐下降。此外,SDC的加入导致SBCO-SDC复合阴极界面电阻(ASR)增加。当SDC含量为20%时,750℃测试的ASR为0.145Ω.cm2,500~800℃范围内电导率大于100 S.cm-1,满足IT-SOFC阴极材料的要求。  相似文献   

12.
采用高温固相反应法对(Al_(0.2)Zr_(0.8))_(4/3.8)Nb(PO_4)_3的P位进行B掺杂,获得了固体电解质(Al_(0.2)Zr_(0.8))_((4+2x)/3.8)NbP_(3–x)B_xO_(12)(x=0~0.2)。利用X射线衍射、场发射扫描电子显微镜、电化学交流阻抗法、直流极化法等对样品的相组成、微观形貌和电性能进行表征。结果表明:不同比例B掺杂的固体电解质(Al_(0.2)Zr_(0.8))_((4+2x)/3.8)Nb P_(3–x)B_xO_(12)(x=0~0.2)均具有NASICON型三维结构,B掺杂并未影响固体电解质的物相结构;与(Al_(0.2)Zr_(0.8))_(4/3.8)Nb(PO_4)_3相比,B掺杂后的样品致密度增大,电导率提高。(Al_(0.2)Zr_(0.8))_(4.2/3.8)Nb P_(2.9)B_(0.1)O_(12)(x=0.1)具有最大的致密度和最高的电导率。在600℃时,样品电导率达到1.27×10~(–3 )S·cm~(–1),是未掺杂样品的2倍;直流极化法测试证实,样品为纯Al~(3+)传导,电子传导可忽略不计。  相似文献   

13.
采用柠檬酸-硝酸盐燃烧法制备PrBaFe_2O_(5+δ)(PBFO)和PrBaFe_(1.6)Ni_(0.4)O_(5+δ)(PBFNO)电极材料,用高温固相法制备La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3–δ)(LSGM)电解质。以LSGM为电解质,PBFNO及PBFNO-SDC分别为对称电极制备单电池。利用X射线衍射法研究材料的物相结构,交流阻抗法记录界面极化行为,扫描电子显微镜观察电池的断面微结构,用自组装的测试系统评价电池输出性能。结果表明:合成的PBFO和PBFNO粉体呈现单一的钙钛矿结构;Ni掺杂能够明显改善空气气氛下的界面极化行为,800℃时电极–电解质的界面极化阻抗由1.94?·cm~2降低到0.39?·cm~2。通过PBFNO与SDC复合能够明显增大电极的三相反应界面,提高电池输出性能,单电池在800℃时的最大功率输出密度从332mW/cm~2增大到372mW/cm~2。PBFNO-SDC复合电极是潜在的对称固体氧化物燃料电池电极材料。  相似文献   

14.
采用溶胶–凝胶–静电纺丝法制备了La0.6Sr0.4Co0.2Fe0.8O3–δ(LSCF)纳米纤维。分析了LSCF纳米纤维的结构和形貌。结果表明:所制备的LSCF纳米纤维为内部微晶排列有序、均匀的多晶纤维,纤维直径约为200nm,长度分布为10~30μm,经1100℃煅烧后仍然保持纤维状。以LSCF纤维作为阴极,制备了固体氧化物燃料电池(SOFC)纽扣电池(GDC+NiO║GDC║LSCF)及其阴极对称电池(LSCE║GDC║LSCF)。单电池的阴极阻抗和电化学性能测试表明,LSCF纳米纤维阴极具有较高的电化学活性和较低的极化阻抗,以氢气为燃料、空气为氧化剂,在650和700℃工作温度下,单电池的最大功率密度分别为0.82和1.07W/cm2;在工作温度分别为600、650、700和750℃下,其阻抗分别为1.09、0.78、0.32和0.11·cm2。  相似文献   

15.
用溶胶–凝胶法合成了无Co的双钙钛矿SmBaFeNiO5+δ(SBFN)阴极材料,并引入Sm0.2Ce0.8O1.9 (SDC)电解质材料制备复合阴极,降低热膨胀系数和优化性能。研究表明:SBFN在30~900℃的平均热膨胀系数为14.1×10-6 K-1,SBFN–SDC15 (质量比为85:15)复合阴极的平均热膨胀系数降为12.0×10-6 K-1。SBFN在425℃时电导率具有最大值,为48 S/cm。700℃时SBFN|SDC|SBFN对称电池的界面极化阻抗(Rp)为0.386Ω·cm2。在SBFN中引入SDC可以改善其电化学性能,SBFN–SDC10 (质量比为90:10)复合阴极具有最低的Rp,为0.224Ω·cm2。800℃时,以SBFN和SBFN–SDC10为阴极的单电池,最大功率密度分别为367.6 m W/cm2和507.8 m W/cm2。  相似文献   

16.
刘宇  刘梅  张玉梅  李季  李海波 《硅酸盐学报》2011,39(6):1017-1021
采用溶胶-凝胶旋涂法制备纳米Co0.8Mg0.2Fe2O4/SiO2复合薄膜.用X射线衍射仪、原子力显微镜及振动样品磁强计分析复合薄膜的结构、表面形貌和磁性,研究退火温度对复合薄膜结构和磁性的影响.结果表明:经800℃退火处理的样品中已形成Co0.8Mg0.2Fe2O4晶相;随着退火温度的提高,Co0.8Mg0.2Fe...  相似文献   

17.
采用溶胶―凝胶燃烧法制备BaCe_(0.8)Y_(0.2)O_(2.9)(BCY)和Ce_(0.8)Gd_(0.2)O_(1.9)(GDC)粉末,并通过机械混合法制备不同摩尔比的BCY―GDC复合电解质粉末,在1 450℃烧结5 h获得BCY―GDC复合电解质。研究了复合电解质的化学稳定性及电化学性能稳定性。结果表明:BCY–GDC复合电解质在CO_2和沸水中的稳定性均高于单相BCY;当BCY―GDC复合电解质中的BCY摩尔分数小于70%时,试样在CO_2气氛和沸水中都具有良好的化学稳定性。基于BCY:GDC摩尔比为1:1的BCY―GDC复合电解质的单电池,在700℃工作20 h内的最大功率密度的稳定性高于基于BCY电解质的单电池。  相似文献   

18.
实验采用草酸二乙酯、Ce(NO_3)_3·6H_2O、Y(NO_3)_3·6H_2O为原料,以尿素为pH值调节剂,利用均相共沉淀法制备了20%(摩尔分数)Y_2O_3掺杂CeO_2(Ce_(0.8)Y_(0.2)O_(1.9))的氧化物前驱体,通过优化沉淀反应过程中尿素用量、pH值及沉淀物醇洗和干燥处理等制备工艺条件,实现对草酸盐沉淀物的制备过程中的团聚控制,得到分散良好的亚微米级草酸盐共沉淀物,进一步选择合适的热处理温度,得到亚微米级的超细Ce_(0.8)Y_(0.2)O_(1.9)粉体。  相似文献   

19.
采用静电纺丝技术和溶胶–凝胶法制备了聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)/La0.6Sr0.4Co0.4Fe0.6O3(LSCF)复合纳米纤维,经过不同温度煅烧处理,获得了具有单晶结构的LSCF纳米纤维,并对纤维样品的煅烧过程、形貌、物相、结构以及电性能进行了表征。结果表明:PVP/LSCF复合纳米纤维中的水分和有机物在达到560℃前已经完全挥发和分解。经煅烧处理,可获得具有斜方六面体结构LSCF。经800℃煅烧后的LSCF纳米纤维的直径主要分布在130~240nm;以LSCF纳米纤维为阴极制备的单电池在750℃工作温度下,其最大功率密度为1.18W/cm2。与用传统溶胶–凝胶法在相同条件下制得的LSCF粉体相比,其单电池的电流–电压–功率性能有显著提高。  相似文献   

20.
采用固相反应法合成中温固体氧化物燃料电池的LaBaCoFeO5+δ阴极粉末,研究不同煅烧温度对晶体结构的影响.将等量的LaBaCoFeO5+δ和Ce0.8 Sm0.2 O1.9电解质粉末通过机械混合和煅烧制备成LaBaCoFeO5+δ-Ce0.8 Sm0.2 O1.9复合阴极粉末.研究了复合阴极粉末的化学相容性、粒度分布、热膨胀和电化学性能.结果表明,LaBaCoFeO5+δ固相反应的最佳温度为1200℃,LaBaCoFeO5+δ和Ce0.8 Sm0.2 O1.9之间没有发生明显的反应,复合阴极粉末的中位径D50为2.441μm.LaBaCoFeO5+δ-Ce0.8 Sm0.2 O1.9复合阴极比LaBaCoFeO5+δ阴极组成的单电池在800℃的极化电阻下降了约48.7%,而最大输出功率密度提高了约82.5%,表现出更好的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号