首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用传统固相法制备了0.97(K0.5Na0.5)NbO3–0.03Bi(Zn2/3Nb1/3)O3+xCuO(KNN–3BZN–xCu)陶瓷,探讨烧结助剂CuO对陶瓷烧结,相结构,微观形貌及电性能的影响规律。结果表明:添加CuO降低了KNN–3BZN–xCu陶瓷的烧结温度。由于固液传质作用,陶瓷晶粒明显长大,形状发生了改变。添加CuO同时优化了陶瓷的介电性能,提高了弛豫性。KNN–3BZN–0.02Cu陶瓷在150~300℃温度范围内具有优异的电性能:介电常数εr=1886,容温变化率–15%≤ΔC/C150℃≤15%,介电损耗tgδ0.029。同时由于体积密度大,KNN–3BZN–0.02Cu陶瓷具有较高的压电性能:d33=164pC/N和kp=0.37。  相似文献   

2.
采用传统固相法制备了0.97(K0.5Na0.5)NbO3–0.03Bi(Zn2/3Nb1/3)O3+xCuO(KNN–3BZN–xCu)陶瓷,探讨烧结助剂CuO对陶瓷烧结,相结构,微观形貌及电性能的影响规律。结果表明:添加CuO降低了KNN–3BZN–xCu陶瓷的烧结温度。由于固液传质作用,陶瓷晶粒明显长大,形状发生了改变。添加CuO同时优化了陶瓷的介电性能,提高了弛豫性。KNN–3BZN–0.02Cu陶瓷在150~300℃温度范围内具有优异的电性能:介电常数εr=1886,容温变化率–15%≤ΔC/C150℃≤15%,介电损耗tgδ0.029。同时由于体积密度大,KNN–3BZN–0.02Cu陶瓷具有较高的压电性能:d33=164pC/N和kp=0.37。  相似文献   

3.
采用传统固相法制备了0.97(K_(0.5)Na_(0.5))NbO_3–0.03Bi(Zn_(2/3)Nb_(1/3))O_3+x CuO(KNN–3BZN–x Cu)陶瓷,探讨烧结助剂CuO对陶瓷烧结,相结构,微观形貌及电性能的影响规律。结果表明:添加CuO降低了KNN–3BZN–x Cu陶瓷的烧结温度。由于固液传质作用,陶瓷晶粒明显长大,形状发生了改变。添加CuO同时优化了陶瓷的介电性能,提高了弛豫性。KNN–3BZN–0.02Cu陶瓷在150~300℃温度范围内具有优异的电性能:介电常数εr=1 886,容温变化率–15%≤ΔC/C150℃≤15%,介电损耗tgδ0.029。同时由于体积密度大,KNN–3BZN–0.02Cu陶瓷具有较高的压电性能:d33=164 p C/N和kp=0.37。  相似文献   

4.
采用传统高温固相反应法制备了掺杂不同量烧结助剂CuO的Ca(Sm0.5Nb0.5)O3微波介质陶瓷,研究了CuO对Ca(Sm0.5Nb0.5)O3陶瓷的烧结性、结构及微波介电性能的影响. 结果表明:添加CuO能有效促进Ca(Sm0.5Nb0.5)O3陶瓷晶粒致密化,降低烧结温度约200℃. 添加1.5%(w) CuO, 1350℃保温4 h烧结的Ca(Sm0.5Nb0.5)O3陶瓷的介电性能较优,相对介电常数er=23.98,品质因素与频率乘积Q′f=27754.5 GHz,谐振频率温度系数tf=-2.7′10-6 ℃-1.  相似文献   

5.
采用固相法制备0.96(K_(0.49)Na_(0.51–x)Li_x)(Nb_(0.97)Ta_(0.03))O_3–0.04Bi_(0.5)Na_(0.5)ZrO_3(0.96KNNTL_x–0.04BNZ,x=0.00,0.01,0.02,0.03,0.04)无铅压电陶瓷,研究Li掺杂量对0.96KNNTLx–0.04BNZ陶瓷相结构、微观形貌和电性能的影响。结果表明:0.96KNNTLx–0.04BNZ陶瓷为纯钙钛矿结构,随着Li掺杂量x的增加,陶瓷由正交–四方两相共存逐渐转变为四方相。在x≤0.01时,陶瓷为正交–四方两相共存的多型相转变(polymorphic phase transition,PPT)结构;当x≥0.02时,陶瓷转变为四方相结构。在PPT向四方相转变的组成边界(x=0.02)处,陶瓷具有优异的电性能:压电常数d33=335 p C/N,机电耦合系数kp=38.40%,机械品质因数Qm=43,介电常数εT33/ε0=1 350,介电损耗tanδ=2.70%,剩余极化强度Pr=23.50μC/cm2,矫顽场Ec=1.52 k V/mm,Curie温度TC=325℃。分析了组成x=0.02的陶瓷在不同温度和不同频率下的交流阻抗谱,表明晶粒和晶界对电传导机制共同起作用,介电弛豫激活能与高温下氧空位移动的激活能相吻合,Erelax=1.15 e V。  相似文献   

6.
采用固相反应法制备Bi_(1.5)ZnNb_(1.5)-xCu_xO_7介电陶瓷,研究了Cu~(2+)替代Nb~(5+)对α-BZN烧结温度、相结构以及介电性能的影响。研究可知:CuO替代能显著降低BZN烧结温度约150℃,材料结构允许的掺杂范围为x≤0.15,样品随掺杂量增加易出现第二相,介电性能也随之变差。CuO掺杂对介电常数温度系数具有明显的调节作用,当x=0.1 mol,在1 MHz下样品获得最佳性能:ε_r=144.226、tanδ=0.0038976、τ_f=-51.61×10~(-6)。  相似文献   

7.
通过XRD衍射仪、SEM扫描电镜表征掺杂ZnO-B_2O_3-Li_2O_3(ZBL)低软化点玻璃助烧剂的Ca_(0.6)La_(0.8/3)TiO_3-Li_(0.5)Nd_(0.5)TiO_3(CLLNT)陶瓷样品的物相组成及结构,研究ZBL玻璃的掺杂量对CLLNT样品烧结性能及微波介电性能的影响。研究表明:加入助烧剂(ZBL)后,CLLNT陶瓷的烧结温度降低至950℃;添加9 wt%ZBL玻璃的CLLNT陶瓷在950℃烧结3h,能够获得较好的介电性能:ε_r=82,tanδ=0.0026,τ_f=16 ppm/℃(1 MHz)。  相似文献   

8.
通过传统固相合成工艺制备了(1-x)Nd(Zn_(1/2)Ti_(1/2)O_3-xSrTiO_3(x=0.0,0.2,0.4,0.5,0.6,0.8)(NZST)微波介质陶瓷。研究了SrTiO_3的添加量x对NZST陶瓷的烧结性能、晶相组成、显微结构以及微波介电性能的影响。结果表明:NZST陶瓷的体积密度随着x值增大而减小,并在1350℃可以烧结致密;XRD结果显示,在x取值的整个范围内,体系均形成两相复合系统;随着SrTiO_3的添加量x的增加,NZST陶瓷的微波介电性能呈现线性的变化规律。当x=0.5时,可获得谐振频率温度系数近零的微波介质陶瓷,其微波介电性能为:ε_r=52.5,Q×f=15834 GHz,τ_f=5.48×10~(-6)/℃。  相似文献   

9.
BiVO4掺杂对(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7陶瓷介电性能的影响   总被引:1,自引:0,他引:1  
采用传统陶瓷工艺制备了BiVO4掺杂的(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7(bismuth zincate niobate,BZN)介质陶瓷,用X射线衍射、扫描电镜以及电感-电容-电阻测试仪等对其烧结特性、相结构及介电性能进行了系统研究.结果表明BiVO4掺杂能显著降低BZN的烧结温度,由1 000℃降至850℃,同时可优化频率温度系数τf,由-450×10-6/℃变为-254×10-6/℃.BiVO4的掺杂量为5%,烧结温度为900℃时,BZN陶瓷具有较好的介电性能介电常数ε=153,品质因数Q=2 100,频率温度系数τf=-350×10-6/℃.  相似文献   

10.
研究了MnCO3,BaZrO3对 0 .35Ba(Zn1 /3Nb2 /3)O3(BZN) -0 .65Sr(Zn1 /3Nb2 /3)O3(SZN)陶瓷介电性能的影响。研究表明 :添加MnCO3,BaZrO3时 ,对陶瓷的烧结均起促进作用 ,增大介电常数。加入 1% (质量分数 )的MnCO3可使陶瓷具有较小的介质损耗 ,同时MnCO3对陶瓷的介电常数温度系数具有正向调整作用。加入BaZrO3后通过生成液相而减少了第二相Ba5Nb4O1 5,BaNb2 O6 的生成。所制备的 ( 0 .35BZN -0 .65SZN) 0 .1%MnCO3陶瓷的εr≈ 43.6,αε≈ -8× 10 - 6 /K ,tanδ =0 .6× 10 - 4 ,且烧结温度低于 130 0℃。  相似文献   

11.
采用固相合成Ca_(0.6)La_(0.8/3)TiO_3-Li_(0.5)Nd_(0.5)TiO_3(CLT-LNT)微波介质陶瓷基体粉体,以ZnSO_4溶液为先驱体引入ZnO来降低该陶瓷的烧结温度,这种液相引入助烧剂的方法不仅减少了烧结助剂的用量,而且改善了陶瓷材料的介电性能。研究表明:掺入ZnO的CLT-LNT陶瓷在980℃烧结时的介电常数(ε_r)和介电损耗(tanδ)随着ZnSO_4溶液浓度的增大先增大后略有减小。当ZnSO_4溶液的浓度为0.32 mol/L时,CLT-LNT陶瓷在980℃烧结3 h获得较好的介电性能:ε_r=102,tanδ=0.0027,τ_f=-3×10~(-6)/℃。  相似文献   

12.
采用固相烧结法制备Ba(Mg_(1/3)Ta_(2/3))O_3+x%ZrO_2(BMZT)微波介质陶瓷,研究了ZrO_2掺杂对Ba(Mg_(1/3)Ta_(2/3))O_3(BMT)微波介质陶瓷结构和介电性能的影响。结果表明:陶瓷体系中存在2种相,主晶相Ba(Mg_(1/3)Ta_(2/3))O_3和附加相Ba_(0.5)TaO_3。随着x的增大,陶瓷体系的相结构由六方结构逐渐向立方结构转变,同时有序相由1:2有序结构逐渐向1:1有序结构转变。添加适量的ZrO_2可以促进液相烧结,当x=8时,陶瓷致密化烧结温度由纯相时的1 650℃以上降至1 450℃,表观密度ρ=7.568 g/cm~3,相对理论密度达到99.1%,BMZT体系拥有良好的微波介电性能:相对介电常数ε_r=25.5,品质因数与谐振频率的乘积Qf=137 600 GHz(8GHz),谐振频率温度系数τ_f=0.3×10~(-6)/℃。  相似文献   

13.
采用固相法制备了(0.94-x)Bi_(0.5)Na_(0.5)TiO_3-x(K_(0.9)Na_(0.1))NbO_3-0.06BaTiO_3((0.94-x)BNT-x KNN-0.06BT,x=0,0.03,0.06,0.09,0.12,0.15)无铅储能陶瓷,系统研究了(K_(0.9)Na_(0.1))NbO_3(KNN)添加量x对陶瓷相结构、微观结构和电储能特性的影响。X射线衍射(XRD)分析结果表明:当x≤0.03时,陶瓷为纯立方钙钛矿结构,而当x≥0.06时,出现第二相。扫描电子显微镜(SEM)结果显示各陶瓷具有高的致密度。采用HP4294精密阻抗分析仪测试了陶瓷的介电性能,采用美国Radiant铁电分析仪测试了陶瓷的电滞回线并计算了其储能密度和能量效率。结果表明在1120℃烧结温度下制备的(0.94-x)BNT-x KNN-0.06BT陶瓷,当x=0.03时,陶瓷具有优异的性能:相对介电常数ε_(33)~T/ε_0=2440,介电损耗tanδ=5.1%,在外加电场90 k V/cm条件下,其有效储能密度γ达到1.43 J/cm~3,且具有较高的能量效率η=72.5%,表明该陶瓷可应用在高压储能陶瓷电容器中。  相似文献   

14.
涂娜  江向平  傅小龙  杨庆  陈超 《硅酸盐学报》2011,39(12):1953-1957
采用固相法制备(1–x)Bi4Ti3O12–xK0.5Na0.5NbO3(BIT–KNN,x=0,0.05,0.10,0.15,0.20,0.30)铋层状压电陶瓷。用X射线衍射分析及扫描电镜等测试方法研究KNN掺量与BIT–KNN陶瓷晶体结构和电性能的关系。结果表明:所有陶瓷样品均为单一的正交相结构;随着KNN掺量的增...  相似文献   

15.
以分析纯的ZnO、ZrO_2、CuO及Nb_2O_5为原料,采用传统固相法制备了Zn_(1–x_Cu_xZrNb_2O_8(ZCZN,x=0.00–0.05)微波介质陶瓷,研究了不同CuO添加量对ZCZN陶瓷的烧结性能、显微结构、相组成以及微波介电性能的影响,利用X射线衍射仪、扫描电子显微镜和网络分析仪等对其微观结构、形貌以及微波介电性能进行表征。结果表明:CuO的添加能有效降低ZnZrNb_2O_8陶瓷的烧结温度,提高其品质因数和介电常数。当x=0.03时,陶瓷可在1 200℃烧结并获得最佳微波介电性能:介电常数ε_r=30.1,品质因数Q×f=53 037 GHz,频率温度系数τ_f=–57.21×10~(–6)/℃。  相似文献   

16.
江向平  易文斌  陈超  涂娜  李小红  展红全 《硅酸盐学报》2012,40(4):479-480,481,482,483,484
采用固相法制备了(1–x)K0.5Na0.5NbO3–xCa0.3Ba0.7TiO3[(1–x)KNN–xCBT]系列无铅压电陶瓷,研究了CBT的含量(x=0~0.08)对样品的物相结构、显微形貌、介电性能以及压电性能的影响。结果表明:所有样品都具有钙钛矿结构;随着x的增加,室温下样品从正交相逐渐向四方相过渡并且Curie温度向低温方向移动,样品的压电常数d33与机电耦合系数kp均先升高后降低。(1–x)KNN–xCBT多晶型转变位于0.03≤x≤0.04,当x=0.03时,样品的压电性能达到最佳:d33=142 pC/N,kp=40%,其介电损耗tanδ从室温到380℃范围内几乎不变且小于0.05,表明组分为x=0.03的陶瓷是一种非常有前景的无铅压电材料。  相似文献   

17.
设计并合成了一种无铅改性BaTiO_3基储能陶瓷,通过固相反应法制备了无铅单相钙钛矿BaTiO_3–Bi(Al_(0.5)Sc_(0.5))O_3陶瓷,研究了掺杂不同含量BAS对陶瓷的结构、介电性能、铁电性能及储能特性的影响。结果表明:(1–x)BT–x BAS固溶体从四方相(x≤0.05)转变为部分立方相(x≥0.1),但仍以四方相为主且细晶化;随着其含量的增加,Curie温度(T_m)向低温方向移动并出现了介电峰宽化,表现出明显的介电色散行为;BAS的引入破坏了BT陶瓷铁电畴的长程有序,发生了铁电相到弛豫铁电相的相变;2种现象均表明BT–BAS陶瓷具有弛豫铁电体的优异特点。在所有样品中,0.85BT–0.15BAS陶瓷的介电温度稳定性最佳,弛豫因子γ为1.97;外加电场~105 k V/cm时,储能密度为0.684 J·cm~(–3),储能效率为95.0%,陶瓷具有最佳储能特性。  相似文献   

18.
以分析纯的ZnO、ZrO_2、CuO及Nb_2O_5为原料,采用传统固相法制备了Zn_(1–x_Cu_xZrNb_2O_8(ZCZN,x=0.00–0.05)微波介质陶瓷,研究了不同CuO添加量对ZCZN陶瓷的烧结性能、显微结构、相组成以及微波介电性能的影响,利用X射线衍射仪、扫描电子显微镜和网络分析仪等对其微观结构、形貌以及微波介电性能进行表征。结果表明:CuO的添加能有效降低ZnZrNb_2O_8陶瓷的烧结温度,提高其品质因数和介电常数。当x=0.03时,陶瓷可在1 200℃烧结并获得最佳微波介电性能:介电常数ε_r=30.1,品质因数Q×f=53 037 GHz,频率温度系数τ_f=–57.21×10^(–6)/℃。  相似文献   

19.
添加剂对Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3陶瓷介电性能的影响   总被引:1,自引:0,他引:1  
研究了MnCO3,BaZrO3对0.35Ba(Zn1/3Nb2/3)O3(BZN)-0.65Sr(Zn1/3Nb2/3)O3(SZN)陶瓷介电性能的影响.研究表明:添加MnCO3,BaZrO3时,对陶瓷的烧结均起促进作用,增大介电常数.加入1%(质量分数)的MnCO3可使陶瓷具有较小的介质损耗,同时MnCO3对陶瓷的介电常数温度系数具有正向调整作用.加入BaZrO3后通过生成液相而减少了第二相Ba5Nb4O15,BaNb2O6的生成.所制备的(0.35BZN0.65SZN)+0.1%MnCO3陶瓷的εr≈43.6,αe≈-8×10-6/K,tanδ=0.6×10-4,且烧结温度低于1 300℃.  相似文献   

20.
研究了烧结助剂BaCu(B2O5)(BCB)对0.4CaTiO3-0.6(Li1/2Nd1/2)TiO3(CLNT)介质陶瓷的烧结特性、相组成、微观形貌及介电性能的影响。结果表明:添加少量的BCB能使CLNT陶瓷的烧结温度从1300℃降低至1050℃。随着BCB添加量的增加,介电常数下降,频率温度系数向负值偏移。添加4wt%BCB的CLNT陶瓷在1050℃烧结2h,获得了最佳的介电性能:εr=96.5,tanδ=0.017,τf=-13.6ppm/℃,满足高介多层片式微波元器件的设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号