首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
针对成像光谱仪通过狭缝进行线视场成像时存在的孔径较小、光学透过率较低等问题,研究了一种基于棱镜-光栅型分光结构的大孔径面视场成像光谱仪。该棱镜-光栅成像光谱仪采用表面浮雕型透射光栅,极大地降低了光栅的制作难度与成本。大孔径面视场的成像光谱仪相较于线视场成像光谱仪有较高光学效率和时间效率。但是面视场成像光谱仪的色畸变与谱线弯曲较难校正。本文将前端望远系统与分光系统进行一体化设计,满足远心光路匹配和孔径匹配,较好地校正了面视场光谱成像系统中的谱线弯曲和色畸变。并且通过加入非球面反射镜及校正镜很好的校正了由于大孔径面视场所引入的非对称性离轴像差。结果表明,设计的大孔径面视场PG成像光谱仪光谱波段范围400~1 000nm,光学调制传递函数达到0.65以上,光谱分辨率达2.5nm,全谱段不同视场的谱线弯曲小于5μm,色畸变小于8μm。  相似文献   

2.
用于大气临边探测的高光谱成像仪是一种探测大气痕量气体的新型空间光学遥感仪器。分析了利用高光谱成像仪进行大气临边探测的原理,设计并研制了一台紫外/可见高光谱成像仪原理样机,该样机光学系统由前置望远系统和改进的Czerny-Turner光谱成像系统组成,工作谱段为280~390 nm和560~780 nm,通过转轮切换紫外、可见滤光片分别探测这2个波段。高光谱成像仪原理样机质量为15 kg,体积500 mm×350 mm×200 mm。对该样机的性能进行了检测并测量了低压汞灯的光谱。性能检测结果表明,空间分辨力为0.44 mrad,光谱分辨力为1.3 nm,均满足设计指标要求。该样机结构紧凑、质量小,在空间大气痕量气体探测领域有广泛的应用前景。  相似文献   

3.
薛庆生 《光学精密工程》2016,24(9):2101-2108
针对天底和临边综合紫外大气探测的需求,分析了天底和临边双视场观测原理和技术指标,设计和研制了多谱段双视场紫外大气探测仪原理样机。该样机光学系统由前透镜组、环形透镜、中继透镜组和窄带滤光片组成,3个工作谱段的中心波长分别为265nm、295nm和360nm,带宽均小于20nm,天底视场为10°,临边视场为360°(141.8°~146.6°),焦距为5mm,F数为3.3,通过切换窄带滤光片完成3个谱段的探测。多谱段双视场紫外大气探测仪整机质量约为3kg,体积为Φ90mm×300mm。对样机的静态传递函数和像面照度均匀性进行了测试。测试结果表明,在特征频率38.5lp/mm处,天底视场的静态传递函数为0.24,临边视场的静态传递函数为0.22,像面照度均匀性为94%,均优于设计指标要求。该原理样机体积小、重量轻,满足空间光学遥感仪器小型化和轻量化的要求。  相似文献   

4.
超光谱成像仪的精细光谱定标   总被引:5,自引:1,他引:4  
郑玉权 《光学精密工程》2010,18(11):2347-2354
为了精细标定棱镜色散超光谱成像仪1024×80光谱像元的中心波长和响应带宽,建立了一套光谱定标装置,提出了实现1nm光谱定标精度的定标方法。首先,介绍了产生谱线弯曲与谱线倾斜的原因,确定了精细光谱定标的方法和数据处理算法;然后,利用光谱定标装置测定了全部光谱响应像元的离散单色光响应值,利用高斯方程拟合了相对光谱响应曲线;最后,建立了中心波长矩阵表和带宽矩阵表,采用多项式拟合算法确定了空间视场像元的色散方程和光谱通道谱线弯曲方程,实验测定了温度变化谱线漂移结果。另外,还对光谱定标精度对辐射定标精度的影响进行了分析。光谱定标结果表明:超光谱成像仪的光谱定标精度达到了±1nm,各谱段带宽平均为8.75nm;色散方程及谱线弯曲与设计结果相符,谱线弯曲值为14~19nm,平均值为17nm;1nm的定标精度对辐射定标精度的影响分别小于1%(3000K黑体)和0.25%(6000K黑体),满足超光谱成像仪1nm光谱定标精度的要求。  相似文献   

5.
赵文才  马军 《光学精密工程》2012,20(12):2619-2625
为了选择合适的低温红外目标模拟光学系统,针对国内现有离轴三反射光学系统多存有弧矢视场较大,子午视场很小的问题,本文基于光学系统对称性法则,设计了子午和弧矢都为5°,波长为3~5μm的矩形双向大视场离轴三反系统,其焦距为400mm,F#为8。利用光学系统结构参数和反射镜的非球面系数,调整三镜的偏心及倾斜来消除畸变及其它像差,系统光学传递函数在6.5lp/mm时优于0.71,全视场均方根波像差达到λ/250,均方根最大弥散斑半径不超过7.0μm,达到衍射极限。另外,系统在各个谱段全视场范围内的最大畸变量小于0.04%。设计的系统可用于红外及可见波段,成像质量均良好。  相似文献   

6.
改进的宽谱段车尔尼-特纳光谱成像系统设计   总被引:3,自引:1,他引:2  
针对传统的车尔尼-特纳光谱仪像散较大的缺点,基于像差理论,提出了一种改进的车尔尼-特纳光谱成像系统.将平面光栅置于发散光中,利用平面光栅产生的像散来补偿物镜产生的像散.推导出了宽谱段像散同时校正条件,实现了宽谱段像散的同时校正.具体分析了像差校正的原理和方法,编制了初始结构快速计算程序.作为实例,设计了一个谱段为540~780 nm的宽谱段像散同时校正车尔尼-特纳光谱成像系统,利用光学设计软件ZEMAX-EE对该光谱成像系统进行了光线追迹和优化设计,并对设计结果进行了分析.结果表明,全视场调制传递函数在整个工作波段均达到0.52以上,实现了宽谱段像散的同时校正,并获得了良好的成像质量,满足了设计指标要求,结果也证实了所提出的改进方法是可行的.  相似文献   

7.
根据宽视场大相对孔径成像光谱仪的应用要求和技术指标,采用离轴Schwarzschild望远成像系统和双Schwarzschild光谱成像系统匹配的结构型式,设计了一个视场为28°、相对孔径为1/2.5、工作波段为0.4~1μm的机载成像光谱仪光学系统;根据双Schwarzschild光谱成像系统的像散校正条件计算了初始结构参数。然后,利用光学设计软件ZEMAX-EE进行了光线追迹和优化设计,并对设计结果进行了分析与评价。结果显示:光谱成像系统中心波长和边缘波长88%以上的能量集中在一个探测器像元内;谱线弯曲和谱带弯曲均小于像元的5%,便于光谱和辐射定标;成像光谱仪全系统在各个波长的光学传递函数均达到0.59以上,完全满足设计指标要求。该成像系统体积小、重量轻,非常适合航空遥感应用。  相似文献   

8.
研究了基于中阶梯光栅多级衍射特性实现谱段展宽的宽谱段空间外差干涉光谱仪的基础理论和系统设计方法。阐述了宽谱段空间外差干涉光谱仪的特点,分析了仪器性能指标(光谱分辨率、光谱范围、视场、信噪比、衍射级次等)与初始光学和电子学参数(光栅、视场棱镜、成像系统、探测器等)之间的理论关系。然后,设计并搭建了宽谱段空间外差干涉光谱仪实验平台,该系统的理论光谱分辨率为0.173cm-1@16 950cm-1,光谱区为500~700nm。最后,给出了激光(543.5nm、632.8nm)、Na灯(589nm、589.6nm)、Hg灯(576.96nm、579.07nm)光源的宽谱段实验结果,其复原光谱的平均波数采样间隔为0.17cm-1;光谱复原过程中采用三角切趾函数,平均光谱分辨率为0.39cm-1。实验结果与理论设计符合良好,且复原谱各级次之间的对应关系与光栅方程确定的理论关系完全符合。  相似文献   

9.
一种凸面光栅Offner结构成像光谱仪的设计方法   总被引:3,自引:0,他引:3  
介绍了一种新型凸面光栅结构成像光谱仪的设计方法.指出在这种系统中存在一个消除了3次和5次像差的环视场.采用低空间频率的凸面光栅(177线/毫米),它仍是一个具有高光谱分辨率(2.1nm)的系统.提出了一种新的设计方法,运用一个简单的方程可以设计出系统中具有最小畸变的环视场;一个非光学专业的设计者可以达到理想的设计目的.这种成像光谱仪结构非常简单,很容易实现小型化和轻型化.实验的结果与理论分析相一致.  相似文献   

10.
成像光谱仪工程权衡优化设计的光学结构   总被引:8,自引:5,他引:3  
对应用需求、卫星可提供资源和技术能力等方面进行综合工程技术权衡,提出了总体优化的光学结构设计方案。设计了在0.4~2.5 μm工作,焦距为800 mm,焦比为4.5,视场为1.43°的非球面三反射镜望远镜和棱镜色散非球面准直-成像光学结构的新型成像光谱仪,其调制传递函数(MTF)达到0.44~0.62,光谱分辨率为3~23 nm,仪器的总重量约为70 kg。在焦平面器件性能和信噪比等技术指标相同的情况下,如果用光栅或干涉式傅里叶变换光谱仪,则需要FN在3以下,仪器的总重量将>100 kg。取得了成像光谱仪分辨率高、积分时间短,焦平面器件接受的辐射能量弱等参数条件下的权衡优化设计。  相似文献   

11.
星载高光谱成像仪光学系统的选择与设计   总被引:7,自引:4,他引:7  
郑玉权  王慧  王一凡 《光学精密工程》2009,17(11):2629-2637
本文概述了目前高光谱成像仪所采用的光学系统结构,分析讨论了棱镜色散、光栅色散、傅立叶变换三种主流高光谱成像仪分光方式的结构原理和优缺点,棱镜色散光能利用率高,但体积大,棱镜材料受空间环境变化影响较大,光栅色散效率低,但体积小,受环境影响小,傅立叶变换光谱成像系统由于分光棱镜的存在,能量至少损失50%以上。文中对国内外高光谱成像仪采用较多的Offner凸光栅光谱成像系统进行了论述,根据应用目标设计了一个离轴三反射镜望远系统和变倍Offner凸光栅组合的高光谱成像仪光学系统,该系统具有体积小、成像质量好、无光谱畸变的优点,通过加大光学系统的相对孔径,增加系统的入射光能量,弥补了光栅衍射效率低的缺点。  相似文献   

12.
机载海洋改进型Dyson高光谱成像仪的研制   总被引:1,自引:0,他引:1  
针对海洋环境、海洋水色等领域的发展需要,设计了一种适于机载的宽视场、大相对孔径的改进型Dyson光谱成像系统。根据海洋环境污染的光学特性,利用不同目标反照率值估算目标信号的信噪比,将高光谱成像仪的工作波段扩宽至紫外波段;使用大像元尺寸的探测器、大相对孔径的成像系统来满足对海洋目标弱信号的识别,同时通过降低积分时间来避免近海岸沙滩信号过强引起的探测器饱和。该光谱仪的工作波段为0.32~1.05μm、相对孔径为f/1.8、像元尺寸为24μm×24μm,通过加入弯月形的矫正镜避免了狭缝、探测器、滤光片和单透镜相互之间产生干涉。设计结果表明,整个光学系统各波长的传递函数均大于0.83,谱线弯曲和谱带弯曲均小于像元尺寸的4%。所设计成像光谱仪系统适用于海洋环境污染,尤其是海洋溢油污染的监测。  相似文献   

13.
为了能对自主研制的脑肿瘤手术医用显微成像光谱仪进行光谱定标,设计了由单色仪、钨灯光源、棱镜-光栅-棱镜成像光谱仪及手术显微平台组成的光谱定标系统。采用单色仪波长扫描法,自主开发了相应的光谱定标系统软件,获得了显微成像光谱仪全谱段的光谱数据,完成了数据处理和分析等工作。通过调整光路、单色仪定标、成像光谱仪定标3个步骤实现了系统的光谱定标。定标结果表明:显微成像光谱仪的光谱区大于400~900nm;定标精度高于0.1nm,光谱分辨率高于3nm,各项特征指标均高于设计指标。测试验证实验表明,所建立的光谱定标系统定标精准,结构简单、紧凑,操作简单,符合显微成像光谱仪的实际临床应用要求。  相似文献   

14.
为了满足高分辨率大相对孔径宽波段高光谱成像仪的要求,提出并设计了一种基于双Schwarzschild结构的平面光栅光谱仪。基于几何像差理论,推导出了像散校正条件,利用Matlab软件编制了初始结构参数快速计算程序。作为实例,设计了一个相对孔径为1/2.5,波段为350~1 000 nm的平面光栅光谱仪光学系统。利用自己编制的Matlab程序计算了初始结构参数,然后利用光学设计软件ZEMAX-EE对该光谱仪的光学系统进行了光线追迹和优化设计,并对设计结果进行分析。结果表明,在整个工作波段(350~1 000 nm)内,点列图半径均方根值小于8.2 μm,实现了大相对孔径宽波段像散同时校正,在宽波段内同时获得了良好的成像质量,满足了设计指标要求。所提出的基于双Schwarzschild结构的平面光栅光谱仪在高光谱遥感领域很有应用前景。  相似文献   

15.
太阳是地球能量的主要来源,太阳活动和变化对地球影响极大。为了满足天文学家对太阳观测和研究的需求,设计一种新型Lymanα和可见光双波段内掩式日冕仪(SCI日冕仪),能够在121.6 nm和700 nm两个波段同时对日冕进行高分辨率成像观测。根据太阳在121.6 nm和700 nm日面与日冕的辐射特性确定仪器的参数,给出了日冕仪的初始结构,建立评价函数对初始结构进行优化。分析了日冕仪光学系统的成像性能和各个光学元件产生杂散光对成像性能的影响,确定影响系统杂散光抑制水平的主要光学元件和机械结构,提出了对光学元件表面粗糙度的要求,给出了里奥光阑的位置和通光口径。还设计了日冕仪光学反射镜和光学分色镜的膜系结构,实现了对内日冕在121.6 nm和700 nm两个波段的同时成像。实验结果表明:SCI日冕仪视场覆盖1.1~2.5个太阳半径(Rs,取1 Rs=0.267°),空间分辨率优于4.8″,杂散光抑制水平在1.1Rs处优于10-6量级,在2.5Rs处优于10-8量级,满足观测需求。  相似文献   

16.
宽光谱大相对孔径CCD星敏感器光学系统设计   总被引:1,自引:1,他引:0  
星敏感器是目前航天器用于确定姿态的最先进的空间姿态敏感器之一。文中针对星敏感器的特点,设计了一种星敏感器光学系统。该光学系统焦距为52.5mm,F数为1.5,视场角为12。,光谱范围为480~850nm,选取复杂化的双高斯光学结构形式及选用特殊的玻璃配对。设计的光学系统在宽谱段范围内获得了较好的成像质量,在13.4μm直径范围内能量包围达到85%,在0.85视场内各色光相对主色光的倍率色差在爱里斑直径范围内,全视场畸变小于1%,能获得准确位置坐标的恒星图片,符合星敏感相机使用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号