首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An accurate viscosity (dynamic viscosity) model is developed for aqueous alkali-chloride solutions of the binary systems, LiCl–H2O, NaCl–H2O, and KCl–H2O, from 273 K to 623 K, and from 1 bar to 1,000 bar and up to high ionic strength. The valid ionic strengths for the LiCl–H2O, NaCl–H2O, and KCl–H2O systems are 0 to 16.7 mol · kg−1, 0 to 6 mol · kg−1, and 0 to 4.5 mol · kg−1, respectively. Comparison of the model with about 4,150 experimental data points concludes that the average absolute viscosity deviation from experimental data in the above range is within or about 1 % for the LiCl–H2O, NaCl–H2O, and KCl–H2O mixtures, indicating the model is of experimental accuracy. With a simple mixing rule, this model can be extrapolated to predict the viscosity of ternary aqueous alkali-chloride solutions, making it useful in reservoir fluid flow simulation. A computer code is developed for this model and can be obtained from the author: (maoshide@cugb.edu.cn).  相似文献   

2.
A pressure–volume–temperature data set has been obtained for natural chromium spinel, using synchrotron X-ray diffraction with a resistance heated diamond-anvil cell (RHDAC). The unit cell parameter of the chromium spinel was measured by energy dispersive X-ray diffraction up to pressures of 26.8 GPa and temperatures of 628 K. No phase change has been observed. The observed P–V–T data were fit to the high-temperature Birch-Murnaghan equation of state, with V 0 fixed at its experimental value, yields K 0 = 209 ± 9 GPa, (∂K/∂T)P = −0.056 ± 0.035 GPa K−1, and α0 = 7±1 × 10−5 K−1. The temperature derivative of the bulk modulus (∂K/∂T)P of chromium spinel is determined here for the first time. The obtained K 0 is slightly higher than the previous results of synthetic spinel. We suggest that Fe2+–Mg2+ substitution is responsible for the high bulk modulus of chromium spinel.  相似文献   

3.
Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of \(\upmu \)s, which is \(10^3\) times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity \(\beta \), which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.  相似文献   

4.
A new relative-humidity setup was developed for calibrating sensors in the temperature range from \(-40\,^{\circ }\mathrm{C}\) up to \(180\,^{\circ }\mathrm{C}\) and at pressures down to 700 hPa and up to 0.5 MPa. The setup is based on the chamber-in-chamber model: a small additional chamber is positioned inside a climatic chamber. While the climatic chamber is used to generate the air temperature, a pre-conditioned gas from outside the climatic chamber delivers the required humidity in the new pressure chamber. Validation of the setup at atmospheric pressure showed relative-humidity uncertainties of 0.2 %rh at 5 %rh over the whole temperature range and 0.4 %rh at 95 %rh for temperatures above \(0\,^{\circ }\mathrm{C}\) . Below \(0\,^{\circ }\mathrm{C}\) , the maximum uncertainty increases to 0.9 %rh due to the influence of the temperature homogeneity. The temperature uncertainty of the new setup is between \(0.10\,^{\circ }\mathrm{C}\) and \(0.21\,^{\circ }\mathrm{C}\) . Five commercially available relative-humidity sensors, of different type and manufacturer and all suitable for high temperatures, were calibrated in the new setup. The measurements showed deviations outside the stated specifications of the manufacturer and the need of traceable calibration facilities.  相似文献   

5.
We investigated the magnetization process of the highly frustrated spinel ZnCr2O4 using the Faraday rotation method at 6 K under the ultra-high magnetic fields up to 400 T by the electro-magnetic flux compression method. We successfully observed the full magnetization process in this material. We found some anomalies which show new phase transitions at 240 T, 290 T, 350 T, and 390 T.  相似文献   

6.
Conductance spectra of a quartz crystal resonator against sweep frequency were obtained in methanol and 1-pentanol up to 700 MPa using a piston-cylinder type cell. A resonance peak around a nominal frequency was observed on the conductance spectra. The frequency shift of the resonance peak increased linearly with pressure. The frequency shift against pressure was represented as the sum of the parts attributed to the viscosity of the liquid and that on the pressure effect of the resonator. The measurements for the resonator immersed in methanol and 1-propanol showed that the part attributed to the compression of the resonator on the frequency shift was similar for the two liquids. An empirical relation was developed on the electrical response of the resonance against the viscosity of the surrounding liquid up to 700 MPa based on these results. It may become possible to estimate the viscosity-density product of various liquids up to this pressure from the frequency shift.  相似文献   

7.
We report the performance of calibration laboratories in the pneumatic pressure region (0 to 5) MPa through a recently conducted inter-laboratory comparison. Six NABL (National Accreditation Board for Testing and Calibration Laboratories) accredited laboratories participated in the program. The proficiency testing program was organized and piloted by CSIR-National Physical Laboratory. The program started in June 2010 and was completed in October 2011. The artifact used was a high precision pressure dial gauge. The reference values were generated by the pilot laboratory. The deviations for each participating laboratory were estimated against the reference pressure values and the compatibility of the results was calculated using the conventional method. Out of the total measurements made, all but two were found to be in good agreement with the reference values. The normalized error values (E n) of five laboratories out of the total six were found well within ± 1 over the entire pressure range.  相似文献   

8.
In this paper, the validation of the water dew-point generator with methane as a carrier gas in the temperature range from \(-41\,^{\circ }\hbox {C}\) to \(+15\,^{\circ }\hbox {C}\) and at pressures up to 6 MPa is reported. During the validation, the generator was used with both nitrogen and methane to investigate the effect of methane on the generator and the chilled mirror dew-point meters. The effect of changing the flow rate and the dew-point temperature of the gas entering the generator, on the gas exiting the generator was investigated. As expected, methane at high pressures created hydrates in combination with water and low temperatures, thus limiting the temperature range of the generator to \(+8\,^{\circ }\hbox {C}\) to \(+15\,^{\circ }\hbox {C}\) at its maximum operating pressure of 6 MPa. A lower operating pressure extended the temperature range; for example, at 3 MPa, the temperature range was already extended down to \(-15\,^{\circ }\hbox {C}\) , and at 1 MPa, the range was extended down to \(-41\,^{\circ }\hbox {C}\) . The validation showed that, in its operating range, the generator can achieve with methane the same standard uncertainty of \(0.02\,^{\circ }\hbox {C}\) frost/dew point already demonstrated for nitrogen and air carrier gases.  相似文献   

9.
National Physical Laboratory (NPLI) India is the premier research and development center and the National Metrology Institute, which provides traceability in measurements by calibration throughout the country. High frequency (HF) voltage is one of the important parameter in electrical metrology. At NPLI the primary standard of HF voltage at frequencies from 1 to 1,000 MHz is a twin resistance coaxial power mount. The calibration technique and establishing the traceability by assigning the RF/DC transfer difference to HF voltage primary standard are described in this paper. The HF voltage primary standard has been characterized by assigning RF/DC transfer differences to it in terms of effective efficiency, RF impedance and DC resistance. The calibration results of the primary standard have been discussed in this paper. The assigned RF/DC transfer difference (δ) and the expanded uncertainty of HF voltage primary standard at 1.0 GHz is (?5.2 ± 5.4) mV/V.  相似文献   

10.
The system was developed for the magnetization measurement in the vertical single-turn coil (V-STC) system at ISSP, which can generate magnetic fields over 100 T in a semi-destructive manner. We have adjusted the electro-magnetic induction method to our V-STC. The new system was applied to the manganite with the perovskite-type structure Bi1/2Ca1/2MnO3. The total magnetization process was obtained up to 105 T in excellent quality comparable to those obtained by the non-destructive long pulse magnet.  相似文献   

11.
Measurements of the density and viscosity of dimethoxymethane and 1,2-dimethoxyethane are reported over the temperature range from 243 K to 373 K and at pressures up to 20 MPa. The measurements were performed simultaneously using a vibrating-wire instrument operated in the forced mode of oscillation. The overall uncertainties of these results are 2.0% in viscosity and 0.2% in density. The measurements were correlated with a Tait-type equation for density and a hard-sphere model for viscosity. The maximum absolute deviation and the average absolute deviation (AAD) of the density measurements from the correlation for dimethoxymethane are 0.065% and 0.012%, respectively, and for 1,2-dimethoxyethane, are 0.16% and 0.044%. With regard to viscosity, the maximum absolute deviation and the AAD of the present results from the correlation for dimethoxymethane are 1.55% and 0.40%, respectively, and for 1,2-dimethoxyethane, are 1.05% and 0.26%. Comparisons of the experimental data and measurements from the literature with values calculated by the correlations at different temperatures and pressures are presented.  相似文献   

12.
A newly designed experimental apparatus has been used to measure the speed of sound u in high-purity water on nine isotherms between 274 and 394 K and at pressures up to 90 MPa. The measurement technique is based on a traditional double-reflector pulse-echo method with a single piezoceramic transducer placed at unequal distances from two stainless steel reflectors. The transit times of an acoustic pulse are measured at a high sampling rate by a digital oscilloscope. The distances between the transducer and the reflectors were obtained at ambient temperature and pressure by direct measurements with a coordinate measuring machine. The speeds of sound are subject to an overall estimated uncertainty of 0.05 %. The acoustic data were combined with available values of density ρ and isobaric heat capacity cp along one isobar at atmospheric pressure to calculate the same quantities over the whole temperature and pressure range by means of a numerical integration technique. These results were compared with those calculated from the IAPWS-95 formulation with corresponding relative deviations which are within 0.1%. Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22–27, 2003, Boulder, Colorado, U.S.A.  相似文献   

13.
A new humidity generator that produces gas streams of known moisture content at temperatures from 85?°C to 200?°C, absolute pressures from 0.2?MPa to 1.6?MPa, and relative humidities from 10 % to 90 % has been developed. The generator produces a moist gas stream by injecting fixed-rate streams of dry gas and liquid water into a vaporizer, where the water evaporates into the gas. The gas stream passes into a re-entrant radio-frequency (RF) cavity, which serves as our reference hygrometer, and then a test chamber. The present standard uncertainty of the RF hygrometer is 0.6 %, limited by the uncertainty of literature values for the polarizability of water. Dry nitrogen gas purging the pressure transducer line also combines with the moist gas stream downstream of the test chamber and flows through one of a set of capillaries. Modulation of gas flow through the fixed flow impedance of the capillary gives a simple method for controlling pressure. Individual insulated, temperature-controlled aluminum ovens enclose each major component. A larger oven encloses these ovens and their connecting tubing. To minimize corrosion, critical components are constructed of high-nickel alloys. The small total volume (<1?L) and small flow rate (<0.5 L·min?1) reduce operational hazards from steam scalding or from gas explosion.  相似文献   

14.
The problem of a uniform ship-hull girder vibrating vertically close to water bottom is studied. A simple formula for the added mass is found by use of the method of matched asymptotic expansions. Results obtained from the present method and BEM are compared. They are in good agreement in the range considered here. The obtained added mass is used to predict the natural vibrations of a uniform beam vibrating close to water bottom. Numerical values show that the effects of shallow water are significant. The first- and second-order frequencies of the ship hull studied in this paper in deep water are about 1·4–3 times higher than those in shallow water.  相似文献   

15.
The second and third virial coefficients are calculated for the (12-7, ) model pair potential. With their help the fourth virial coefficient is determined from the experimental data for P, V, and T. The limit of applicability of the equation of state obtained is indicated.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 53, No. 4, pp. 589–593, October, 1987.  相似文献   

16.
The second and third virial coefficients are calculated for a (12–7, ) pair model potential. With their help the fourth virial coefficient is determined from the experimental p, , and T data. The limits of applicability of the equation of state obtained is indicated.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 52, No. 6, pp. 974–977, June, 1987.  相似文献   

17.
Measurements of (p, ρ, T) properties for compressed liquid propane have been obtained by means of a metal-bellows variable volumometer at temperatures from 340 to 400 K at pressures up to 200 MPa. The volume- fraction purity of the propane sample was 0.9999. The expanded uncertainties (k = 2) of temperature, pressure, and density measurements have been estimated to be less than 3 mK; 1.5 kPa ( MPa), 0.06% (7 MPa MPa), 0.1% (50 MPa MPa) , and 0.2% (p>150 MPa); and 0.11%, respectively. Four (p, ρ, T) measurements at the same temperatures and pressures as literature values have been conducted for comparisons. In addition, vapor pressures were measured at temperatures from 280 to 369 K. Furthermore, comparisons of available equations of state with the present measurements are reported.Paper presented at the 17th European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

18.
We present an analysis of the electronic 3p←3s excitation of Na atoms attached to 3He and 4He droplets. Once the ground state structure of the doped drops has been obtained within finite-range density functional theory, we determine the time-correlation function of the Na atom evolving in the full three-dimensional 2Π1/2, 2Π3/2 and 2Σ1/2 potentials generated by its pairwise interaction with the helium atoms. The Fourier analysis of the time-correlation function determines the absorption spectrum of Na, which is compared with the experimental spectrum. We show that the existence of a redshifted shoulder in the absorption line of Na@4He N , absent in Na@3He N , is due to the wider vibrational motion of the dopant atom in the dimple it causes on the surface of the droplet.  相似文献   

19.
20.
PVT properties were measured for hydrogen by the Burnett method in the temperature range from 353 K to 473 K and at pressures up to 100 MPa. In the present Burnett method, the pressure measurement was simplified by using an absolute pressure transducer instead of a differential pressure transducer, which is traditionally used. The experimental procedures become easier, but the absolute pressure transducer is set outside the constant temperature bath because of the difficulty of its use in the bath, and the data acquisition procedure is revised by taking into account the effects of the dead space in the absolute pressure transducer. The measurement uncertainties in temperature, pressure, and density are 20 mK, 28 kPa, and 0.07 % to 0.24 % (k = 2), respectively. Based on the present data and other experimental data at low temperatures, a virial equation of state (EOS) from 220 K to 473 K and up to 100 MPa was developed for hydrogen with uncertainties in density of 0.15 % (k = 2) at P ≤ 15 MPa, 0.20 % at 15 MPa < P ≤ 40 MPa, and 0.24 % at P > 40 MPa, and this EOS shows physically reasonable behavior of the second and third virial coefficients. Isochoric heat capacities were also calculated from the virial EOS and were compared with the latest EOS of hydrogen. The calculated isochoric heat capacities agree well with the latest EOS within 0.5 % above 300 K and up to 100 MPa, while at lower temperatures, as the pressure increases, the deviations become larger (up to 1.5 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号