首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metal hydrides can store hydrogen at high volumetric efficiencies. As the process of charging hydrogen into a metal powder to form its hydride is exothermic, the heat released must be removed quickly to maintain a rapid charging rate. An effective heat removal method is to incorporate a heat exchanger such as a heat pipe within the metal hydride bed. In this paper, we describe a two-dimensional numerical study to predict the transient heat and mass transfer in a cylindrical metal hydride tank embedded with one or more heat pipes. Results from a parametric study of hydrogen storage efficiency are presented as a function of storage tank size, water jacket temperature and its convective heat transfer coefficient, and heat pipe radius and its convective heat transfer coefficient. The effect of enhancing the thermal conductivity of the metal hydride by adding aluminum foam is also investigated. The study reveals that the cooling water jacket temperature and the heat pipe's heat transfer coefficient are most influential in determining the heat removal rate. The addition of aluminum foam reduces the filling time as expected. For larger tanks, more than one heat pipe is necessary for rapid charging. It was found that using more heat pipes of smaller radii is better than using fewer heat pipes with larger radii. The optimal distribution of multiple heat pipes was also determined and it is shown that their relative position within the tank scales with the tank size.  相似文献   

2.
In this paper, a three-dimensional hydrogen absorption model is developed to precisely study the hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed 3D simulation results show that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that hydrogen absorption is very efficient early during the hydriding process; thus, the local cooling effect is not influential. On the other hand, non-uniform distributions are predicted at the subsequent absorption stage, which is mainly due to differential degrees of cooling between the vessel wall and core regions. In addition, a parametric study is carried out for various designs and hydrogen feed pressures. This numerical study provides a fundamental understanding of the detailed heat and mass transfer phenomena during the hydrogen absorption process and further indicates that efficient design of the storage vessel and cooling system is critical to achieve rapid hydrogen charging performance.  相似文献   

3.
In this paper a two-dimensional model of an annular cylindrical reactor filled with metal hydride suitable for hydrogen storage is presented. Comparison of the computed bed temperatures with published experimental data shows a reasonably good agreement except for the initial period. Effects of hydrogen pressure and external fluid temperatures on heat transfer and entropy generation are obtained. Results show that the time required for hydrogen charging and discharging is higher when the thermal capacity of the reactor wall is considered. The time required for absorption and desorption can be reduced significantly by varying the hydrogen gas pressure and external fluid temperatures. However, along with reduction in time the entropy generated during hydrogen storage and discharge increases significantly. Results also show that for the given input conditions, heat transfer between the external fluid and hydride bed is the main source of entropy generation.  相似文献   

4.
Metal hydrides offer the potential to store hydrogen at modest pressures and temperatures with high volumetric efficiencies. The process of charging hydrogen into a metal powder to form the hydride is exothermic. The heat released by the reaction must be removed quickly in order to maintain a rapid charging rate. An effective method for heat removal is to embed a heat exchanger within the metal hydride bed. Here, we investigate the effectiveness of a helical coil heat exchanger tube to remove the heat generated during the absorption process. This paper presents a three-dimensional mathematical model formulated in Ansys Fluent 12.1 to evaluate the transient heat and mass transfer in a cylindrical metal hydride tank embedded with a helical-coil cooling tube. We present results from a parametric study of hydrogen storage efficiency as a function of helical coil pitch and convective heat transfer coefficient (h) within the cooling tube. We also explore the effect of adding aluminum foam to enhance the thermal conductivity of the metal hydride. The parametric study reveals that the mass of stored hydrogen is less sensitive to the coil pitch when aluminum foam is added. It is also found that the absorption rate increases with h as expected, although the rate of improvement diminishes at high values of h. Results were examined at filling times of 3 and 6 min to draw conclusions about the overall effectiveness of this hydrogen storage system. At 3 min, it is found that the addition of 5% Al foam is optimal, and h = 1000 W/m2-K is sufficient to bring the metal hydride to saturation; under these conditions a non-dimensional pitch of 0.5 maximizes the hydrogen absorption. Adding Al foam beyond 5% does not improve volumetric efficiency as the Al foam begins to displace the active hydrogen-absorbing material.  相似文献   

5.
In this paper, a three-dimensional model for hydrogen absorption in a metal alloy has been developed, validated against the experimental data in the literature, and then applied to a novel design for a hydrogen storage unit. The proposed design is similar to the fuel cell stack, but here the Membrane Electrode Assembly (MEA) has been replaced by a metal hydride (MH) reactor placed between the flow-field plates. These are stacked together to achieve the required amount of hydrogen storage. The flow-field plates have channels engraved on one side for hydrogen supply and on the other, for coolant/heating medium. It is known that the effectiveness of a hydrogen storage unit is directly related to its heat transfer area, and therefore, the choice of its geometry is very important. The larger the size, the more the resistance to heat transfer. Although, the internal tubular heat exchangers have proven to be effective in heat transfer, they pose severe challenges such as cooling/heating medium leakage due to tube erosion, stresses generated, etc. and they displace the active metal hydride from the tank. The present stacked MH reactor configuration helps to overcome these challenges by stacking small MH reactors together and there is no chance of the cooling/heating medium leaking into the metal hydride. Numerical simulations were performed to investigate the effect of coolant flow rate and percentage of flow-field plate rib area exposed to the MH reactor on temperature evolution and the amount of hydrogen stored. Further, a detailed study was carried out to understand the effect of compartmentalization of the MH reactor on temperature distribution. The results revealed that compartmentalization substantially helps to uniformly distribute the temperature in the metal bed, which is very important to maintain uniform utilization of the metal powder. Consequently, the uniform metal powder density for repeated absorption-desorption cycles without significant loss of its hydrogen storage capabilities.  相似文献   

6.
This paper examines the dynamics of metal hydride storage systems by experimentation and numerical modelling. A specially designed and instrumented metal hydride tank is used to gather data for a cyclic external hydrogen load. Thermocouples provide temperature measurements at various radial and axial locations in the metal hydride bed. This data is used to validate a two-dimensional mathematical model previously developed by the authors. The model is then used to perform a parametric study on some of the key variables describing metal hydride systems. These variables are the equilibrium pressure, where the tails and concentration dependence are investigated, and the effective thermal conductivity of the metal hydride bed, where the pressure and concentration dependence are analyzed. Including tails on the equilibrium pressure curves was found to be important particularly for the accuracy of the initial cycles. Introducing a concentration dependence for the plateau region of the equilibrium pressure curve was found to be important for both pressure and temperature results. Effective thermal conductivity was found to be important, and the inclusion of pressure and concentration dependence produced more precise modelling results.  相似文献   

7.
Hydrogen storage and release process of metal hydride (MH) accompany with large amount of reaction heat. The thermal management is very important to improve the comprehensive performance of hydrogen storage unit. In present paper, thermochemical material (TCM) is used to storage and release the reaction heat, and a new sandwich configuration reaction bed of MH-TCM system was proposed and its superior hydrogen and thermal storage performance were numerically validated. Firstly, the optimum TCM distribution with a volume ratio (TCM in inner layer to total) of 0.4 was derived for the sandwich bed. Then, comparisons between the sandwich reaction bed and the traditional reaction bed were performed. The results show that the sandwich MH-TCM system has faster heat transfer and reaction rate due to its larger heat transfer area and smaller thermal resistance, which results in the hydrogen storage time is shortened by 61.1%. The heat transfer in the reaction beds have significant effects on performance of MH-TCM systems. Increasing the thermal conductivity of the reaction beds can further reduce the hydrogen storage time. Moreover, improving the hydrogen inflation pressure can result in higher equilibrium temperature, which is beneficial for the enhancing heat transfer and hydrogen absorption rates.  相似文献   

8.
In this study, a performance analysis of metal hydride reactors (MHRs) based hydrogen storage during absorption process is presented. The study shows the effect of using heat pipe and fins for enhancing heat transfer inside MHRs at various hydrogen supply pressures. Three different cylindrical MHR configurations using LaNi5 as a storage media were adopted including: i) reactor cooled by means of natural convection, ii) reactor equipped with a heat pipe along its central axis, iii) reactor equipped with finned heat pipe. A 3-D mathematical model is developed and utilized to simulate the thermofluidynamic behaviour of a metal hydride bed. The simulation study is conducted by solving simultaneously the energy, mass, momentum, and kinetic differential equations of conservation by using COMSOL multiphysics 5.2a software. Parameters such as hydrogen stored capacity, internal temperature distribution for the reactor, and their duration have been optimized. The model was validated against experimental result which have been previously published by the authors. The obtained results confirmed that the simulation and experimental results reasonably match where the maximum error vlaue was less than 8% at 10-bar hydrogen supply pressure, which proves that the model has efficiently captured the key experimental trends. On the other hand, the MHR design, which is equipped with a finned heat pipe is shown a superior performance as compared to all the other tested configurations in terms of charging time and storage capacity. Therefore, the model can be used as a helpful tool in the optimization of the MHR designs and performance.  相似文献   

9.
10.
In this paper, a novel 3D flexible tool for simulation of metal hydrides-based (LaNi5) hydrogen storage tanks is presented. The model is Finite Element-Based and considers coupled heat and mass transfer resistance through a non-uniform pressure and temperature metal hydride reactor. The governing equations were implemented and solved using the COMSOL Multiphysics simulation environment. A cylindrical reactor with different cooling system designs was simulated. The shortest reactor fill time (15 min) was obtained for a cooling design configuration consisting of twelve inner cooling tubes and an external cooling jacket. Additional simulations demonstrated that an increase of the hydride thermal conductivity can further improve the reactor dynamic performance, provided that the absorbent bed is sufficiently permeable to hydrogen.  相似文献   

11.
This paper presents a zero-dimensional (0D) model of hydride tank. The model aims to study the dynamic heat and mass transfers during desorption process in order to investigate the thermal-fluidic behaviors of this hydride tank. This proposed model has been validated experimentally thanks to a tailor-made developed test bench. This test bench allows the hydride characterization at tank scale and also the energetic characterization. The simulation results of the heat exchanges and mass transfer in and between the coupled reaction bed, show good agreement with the experimental ones. It is shown that the heat produced by a Proton Exchange Membrane Fuel Cell (PEMFC) (estimated starting from an electrical model) is enough to heat the metal alloy (FeTi) and therefore release the hydrogen with a sufficient mass flow rate to supply the PEMFC. Furthermore, the obtained results highlight the importance of the developed model for energy management of the coupling of fuel cell and hydride tank system.  相似文献   

12.
In this paper, a two-dimensional computational investigation of coupled heat and mass transfer process in an annular cylindrical hydrogen storage device filled with MmNi4.6Al0.4MmNi4.6Al0.4 is presented using a commercial software FLUENT 6.1.22. Hydrogen storage performance of the device is studied by varying the operating parameters such as hydrogen supply pressure and absorption temperature. Further, the effects of various bed parameters such as hydride bed thickness and overall heat transfer coefficient on the storage performance of the device are also studied. The average temperature of the hydriding bed and hydrogen storage capacity at different supply pressures showed good agreement with the experimental data reported in the literature. It is observed that as the hydriding process is initiated, the absorption of hydrogen increases rapidly and then it slows down after the temperature of the hydride bed increases due to the heat of the reaction. At any given absorption temperature, the hydrogen absorption rate and hydrogen storage capacity are found to increase with the supply pressure. The variation in the hydrogen absorption capacity, rate of reaction and temperature profiles at different supply pressures from 5 to 35 bar in steps of 5 bar are presented. Further, the effects of overall heat transfer coefficients from 750 to 1250 W/m2 K and cooling fluid temperatures from 288 to 298 K on hydrogen storage capacity are also investigated. It is shown that the heat transfer rate enhances the hydriding rate by accomplishing a rapid reaction. At the supply condition of 35 bar and 298 K, MmNi4.6Al0.4MmNi4.6Al0.4 stores about 13.1 g of hydrogen per kg of alloy.  相似文献   

13.
Metal hydride hydrogen storage reservoir should be carefully designed to achieve acceptable performance due to significant thermal effect on the system during hydriding/dehydriding. Phase change materials can be applied to metal hydride hydrogen storage system in order to improve the system performance. A transient two-dimensional axisymmetric numerical model for the metal hydride reservoir packed with LaNi5 has been developed on Comsol platform, which was validated by comparing the simulation results with the experiment data from other work. Then, the performances of metal hydride hydrogen storage reservoir using phase change materials were predicted. The effects of some parameters, such as the thermal conductivity, the mass and the latent heat of fusion of the phase change materials, on the metal hydride hydrogen storage reservoir were discussed. The results shown that it was good way to improve the efficiency of the system by increasing the thermal conductivity of phase change materials and selecting a relatively larger latent heat of fusion. Due to the relatively lower thermal conductivity of phase change materials, different metal foams were composited with the phase change materials in order to improve the heat transfer from the metal hydride bed to the phase change materials and the hydrogen storage efficiency. The effect of aluminium foam on the metal hydride reservoir was studied and validated. The phase change materials composited with copper foam shown better performance than that composited with aluminium foam.  相似文献   

14.
An optimized design for a 210 kg alloy, TiMn alloy based hydrogen storage system for stationary application is presented. A majority of the studies on metal hydride hydrogen systems reported in literature are based on system scale less than 10 kg, leaving questions on the design and performance of large-scale systems unanswered. On the basis of sensitivity to various design and operating parameters such as thermal conductivity, porosity, heat transfer coefficient etc., a comprehensive design methodology is suggested. Following a series of performance analyses, a multi-tubular shell and tube type storage system is selected for the present application which completes the absorption process in 900 s and the desorption process in 2000 s at a system gravimetric capacity of 0.7% which is a vast improvement over similar studies. The study also indicates that after fifty percent reaction completion, heat transfer ceases to be the major controlling factor in the reaction. This could help prevent over-designing systems on the basis of heat transfer, and ensure optimum system weight.  相似文献   

15.
The execution of metal hydride reactor (MHR) for storage of hydrogen is greatly affected by thermal effects occurred throughout the sorption of hydrogen. In this paper, based on different governing equations, a numerical model of MHR filled by MmNi4.6Al0.4 is formed using ANSYS Fluent for hydrogen absorption process. The validation of model is done by relating its simulation outcomes with published experimental results and found a good agreement with a deviation of less than 5%; hence present model accuracy is considered to be more than 95%. For extraction or supply of heat, water or oil is extensively used in MHR during the absorption or the desorption process so as to improve the competency of the system. Since nanofluid (mixture of base fluid and nanoparticles) has a higher heat transfer characteristics, in this paper the nanofluid is used in place of the conventional heat transfer fluid in MHR. Further the numerical model of MHR is modified with nanofluid as heat extraction fluid and results are presented. The Al2O3/H2O, CuO/H2O and MgO/H2O nanofluids are selected and simulations are carried out. The results are obtained for different parameters like nanoparticle material, hydrogen concentration, supply pressure and cooling fluid temperature. It is seen that 5 vol% CuO/H2O nanofluid is thermally superior to Al2O3/H2O and MgO/H2O nanofluid. The heat transfer rate improves by the increment in the supply pressure of hydrogen as well as decrement in temperature of nanofluid. The CuO/H2O nanofluid increases the heat transfer rate of MHR up to 10% and the hydrogen absorption time is improved by 9.5%. Thus it is advantageous to use the nanofluid as a heat transfer cooling fluid for the MHR to store hydrogen.  相似文献   

16.
This paper presents a two-dimensional mathematical model to optimized heat and mass transfer in metal hydride storage tanks (hereinafter MHSTs) for fuel cell vehicles, equipped with finned spiral tube heat exchangers. This model which considers complex heat and mass transfer was numerically solved and validated by comparison with experimental data and a good agreement is obtained.  相似文献   

17.
Hydrogen storage in metal hydrides presents distinct challenges which encourage the study of effective heat management strategies. Hydrogen absorption in metal hydrides is an exothermic reaction, consequently the generated heat must be removed effectively to achieve the desired performance. This work presents a mathematical model describing the adsorption of hydrogen in La Ni4.7Co0.3 metal hydride as a storage material. Heat and mass transfer effects are modeled in detail. The effect of heat transfer coefficient is also estimated. Besides, a heat transfer fluid for cooling is incorporated to the model. The problem is mathematically formulated presenting a numerical simulation of a design of a cylindrical tank for hydrogen storage. The alloy is studied by using pressure-composition-temperature curves which are carried out at different temperatures. Thermodynamic parameters and hydrogen storage capacity are determined. For isotherm's kinetics, the Jonhson-Mehl-Avrami-Kolomogorov model is used, from which the kinetic constant of the hydriding process is determined.  相似文献   

18.
Metal hydride (MH) hydrogen storage is used in both mobile and stationary applications. MH tanks can connect directly to high-pressure electrolyzers for on-demand charging, saving compression costs. To prevent high hydrogen pressure during charging, hydrogen generation needs to be controlled with consideration for unknown disturbances and time-varying dynamics. This work presents a robust control system to determine the appropriate mass flow rate of hydrogen, which the water electrolyzer should produce, to maintain the gaseous hydrogen pressure in the tank for the hydriding reaction. A control-oriented model is developed for MH hydrogen storage for control system design purposes. A proportional-integral (PI) and an active disturbance rejection control (ADRC) feedback controllers are investigated, and their performance is compared. Simulation results show that both the PI and ADRC controllers can reject both noises from the output measurements and unknown disturbances associated with the heat exchanger. ADRC excels in eliminating disturbances produced by the input mass flow rate, maintaining the pressure of the tank at the charging pressure with little oscillations. Additionally, the parameters estimated by the ADRC's extended state observer was used to predict the state-of-charge (SOC) of the MH.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号