首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of increasing attempts for the production of renewable energy, the production of biohydrogen energy by a new mesophilic bacterium Clostridium sp. YM1 was performed for the first time in the dark fermentation. Experimental results showed that the fermentative hydrogen was successfully produced by Clostridium sp. YM1 with the highest cumulative hydrogen volume of 3821 ml/L with a hydrogen yield of 1.7 mol H2/mol glucose consumed. Similar results revealed that optimum incubation temperature and pH value of culture medium were 37 °C and 6.5, respectively. The study of hydrogen production from glucose and xylose revealed that this strain was able to generate higher hydrogen from glucose compared to that from xylose. The profile of volatile fatty acids produced showed that hydrogen generation by Clostridium sp. YM1 was butyrate-type fermentation. Moreover, the findings of this study indicated that an increase in head space of fermentation culture positively enhanced hydrogen production.  相似文献   

2.
This study evaluates the effect of pH (4-7) on fermentative biohydrogen production by utilizing three isolated Clostridium species. Fermentative batch experiments show that the maximum hydrogen yield for Clostridium butyricum CGS2 (1.77 mmol/mmol glucose) is achieved at pH 6, whereas a high hydrogen production with Clostridium beijerinckii L9 (1.72 mmol/mmol glucose) and Clostridium tyrobutyricum FYa102 (1.83 mmol/mmol glucose) could be achieved under uncontrolled pH conditions (initial pH of 6.4-6.6 and final pH of 4-4.2). Low hydrogen yields (0-0.6 mmol/mmol glucose) observed at pH 4 are due likely to inhibitory effects on the microbial growth, although a low pH can be thermodynamically favorable for hydrogen production. The low hydrogen yields (0.12-0.64 mmol/mmol glucose) observed at pH 7 are attributed not only to thermodynamically unfavorable, but also metabolically unfavorable for hydrogen production. The relatively high levels of lactate, propionate, or formate observed at pH 7 reflect presumably the high enzymatic activities responsible for their production, together with the low hydrogenase activity, resulting in a low hydrogen production. A correlation analysis of the data from present and previous studies on biohydrogen production with pure Clostridium cultures and mixed microflora indicates a close relation between the hydrogen yield (YH2) and the (YH2)/(2(YHAc+YHBu)) ratio, with the observed correlation coefficient (0.787) higher than that (0.175) between YH2 and the molar ratio of butyrate to acetate (B/A). Based on the (YH2)/(2(YHAc+YHBu)) ratios observed at different pHs, a control of pH at 5.5-6.8 would seem to be an effective means to enhance the fermentative biohydrogen production.  相似文献   

3.
A horizontal tubular fixed bed bioreactor (HFBR) and an anaerobic biodisc-like reactor (AnBDR) were designed to both fix Clostridium biomass and enable rapid transfer of the hydrogen produced to gas phase in order to decrease the strong effect of H2 partial pressure and H2 supersaturation on the performances of Clostridium strains. The highest H2 production rate (703 mL H2/L h) and yield (302 mL/g glucose consumed i.e. 2.4 mol/mol) with the pure culture were recorded in the AnBDR with 300 mL culture medium (total volume 2.3 L) at pH 5.2 and a glucose loading rate of 2.87 g/L h. These results are about 2.3 and 1.3-fold higher than those achieved in the same bioreactor with 500 mL liquid medium and with the same glucose consumption rate. Therefore, our experimentations and a short review of the literature reported in this paper emphasize the relevance of performing bioreactors with high L/G transfer.  相似文献   

4.
Cellobiose fermentation in batch test using an isolated strain, Clostridium sp. R1, was investigated. The Clostridium sp. R1 achieved a maximum hydrogen yield of 3.5 mol H2 mol−1 cellobiose at pH 6 and 30 °C, higher than most yields reported in literature. This strain can generate hydrogen from a number of carbohydrates, including galactose, glucose, mannose, maltose, sucrose, and starch. This strain can also convert cellobiose to hydrogen in the presence of toxic phenol or cresol. The inhibition effects of phenolic compounds on strain R1 activity followed phenol > p-cresol > o-cresol > m-cresol. Co-culturing with another strain, Clostridium butyricum, can co-degrade some of the phenol as substrates. The new isolated strain can yield hydrogen from phenol-containing wastewaters.  相似文献   

5.
A hydrogen producing facultative anaerobic alkaline tolerant novel bacterial strain was isolated from crude oil contaminated soil and identified as Enterobacter cloacae DT-1 based on 16S rRNA gene sequence analysis. DT-1 strain could utilize various carbon sources; glycerol, CMCellulose, glucose and xylose, which demonstrates that DT-1 has potential for hydrogen generation from renewable wastes. Batch fermentative studies were carried out for optimization of pH and Fe2+ concentration. DT-1 could generate hydrogen at wide range of pH (5–10) at 37 °C. Optimum pH was; 8, at which maximum hydrogen was obtained from glucose (32 mmol/L), when used as substrate in BSH medium containing 5 mg/L Fe2+ ion. Decrease in hydrogen partial pressure by lowering the total pressure in the fermenter head space, enhanced the hydrogen production performance of DT-1 from 32 mmol H2/L to 42 mmol H2/L from glucose and from 19 mmol H2/L to 33 mmol H2/L from xylose. Hydrogen yield efficiency (HY) of DT-1 from glucose and xylose was 1.4 mol H2/mol glucose and 2.2 mol H2/mol xylose, respectively. Scale up of batch fermentative hydrogen production in proto scale (20 L working volume) at regulated pH, enhanced the HY efficiency of DT-1 from 2.2 to 2.8 mol H2/mol xylose (1.27 fold increase in HY from laboratory scale). 84% of maximum theoretical possible HY efficiency from xylose was achieved by DT-1. Acetate and ethanol were the major metabolites generated during hydrogen production.  相似文献   

6.
This paper reports investigations carried out to determine the optimum culture conditions for the production of hydrogen with a recently isolated strain Clostridium butyricum CWBI1009. The production rates and yields were investigated at 30 °C in a 2.3 L bioreactor operated in batch and sequenced-batch mode using glucose and starch as substrates. In order to study the precise effect of a stable pH on hydrogen production, and the metabolite pathway involved, cultures were conducted with pH controlled at different levels ranging from 4.7 to 7.3 (maximum range of 0.15 pH unit around the pH level). For glucose the maximum yield (1.7 mol H2 mol−1 glucose) was measured when the pH was maintained at 5.2. The acetate and butyrate yields were 0.35 mol acetate mol−1 glucose and 0.6 mol butyrate mol−1 glucose. For starch a maximum yield of 2.0 mol H2 mol−1 hexose, and a maximum production rate of 15 mol H2 mol−1 hexose h−1 were obtained at pH 5.6 when the acetate and butyrate yields were 0.47 mol acetate mol−1 hexose and 0.67 mol butyrate mol−1 hexose.  相似文献   

7.
The present study investigated hydrogen production potential of novel marine Clostridium amygdalinum strain C9 isolated from oil water mixtures. Batch fermentations were carried out to determine the optimal conditions for the maximum hydrogen production on xylan, xylose, arabinose and starch. Maximum hydrogen production was pH and substrate dependant. The strain C9 favored optimum pH 7.5 (40 mmol H2/g xylan) from xylan, pH 7.5–8.5 from xylose (2.2–2.5 mol H2/mol xylose), pH 8.5 from arabinose (1.78 mol H2/mol arabinose) and pH 7.5 from starch (390 ml H2/g starch). But the strain C9 exhibited mixed type fermentation was exhibited during xylose fermentation. NaCl is required for the growth and hydrogen production. Distribution of volatile fatty acids was initial pH dependant and substrate dependant. Optimum NaCl requirement for maximum hydrogen production is substrate dependant (10 g NaCl/L for xylose and arabinose, and 7.5 g NaCl/L for xylan and starch).  相似文献   

8.
A new fermentative hydrogen-producing strain FS2011 was isolated from an effluent of bio-hydrogen production reactor, and identified as Bacillus amyloliquefaciens on the basis of 16S rDNA gene sequence. The strain could utilize various carbon and nitrogen sources to produce hydrogen in a broad range of initial pH (5.29–7.38). Phosphate buffer concentration and fermentation temperature significantly affected hydrogen production and cell growth. The maximum hydrogen yield of 2.26 mol/mol was observed at glucose concentration of 10 g/l, beef extract concentration of 2 g/l, initial pH 6.98, phosphate buffer of 20 mmol/l, and 35 °C, indicating FS2011 was a high-efficiency hydrogen-producing bacterium.  相似文献   

9.
Hydrogen producing novel bacterial strain was isolated from formation water from oil producing well. It was identified as Thermoanaerobacter mathranii A3N by 16S rRNA gene sequencing. Hydrogen production by novel strain was pH and substrate dependent and favored pH 8.0 for starch, pH 7.5 for xylose and sucrose, pH 8.0–9.0 for glucose fermentation at 70 °C. The highest H2 yield was 2.64 ± 0.40 mol H2 mol glucose at 10 g/L, 5.36 ± 0.41 mol H2 mol – sucrose at 10 g/L, 17.91 ± 0.16 mmol H2 g – starch at 5 g/L and 2.09 ± 0.21 mol H2 mol xylose at 5 g/L. The maximum specific hydrogen production rates 6.29 (starch), 9.34 (sucrose), 5.76 (xylose) and 4.89 (glucose) mmol/g cell/h. Acetate-type fermentation pathway (approximately 97%) was found to be dominant in strain A3N, whereas butyrate formation was found in sucrose and xylose fermentation. Lactate production increased with high xylose concentrations above 10 g/L.  相似文献   

10.
Thermophilic dark fermentative hydrogen producing bacterial strain, TERI S7, isolated from an oil reservoir flow pipeline located in Mumbai, India, showed 98% identity with Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. It produced 1450–1900 ml/L hydrogen under both acidic and alkaline conditions; at a temperature range of 45–60 °C. The maximum hydrogen yield was 2.5 ± 0.2 mol H2/mol glucose, 2.2 ± 0.2 mol H2/mol xylose and 5.2 ± 0.2 mol H2/mol sucrose, when the respective sugars were used as carbon source. The cumulative hydrogen production, hydrogen production rate and specific hydrogen production rate by the strain TERI S7 with sucrose as carbon source was found to be 1704 ± 105 ml/L, 71 ± 6 ml/L/h and 142 ± 13 ml/g/h respectively. Major soluble metabolites produced during fermentation were acetic acid and butyric acid. The strain TERI S7 was also observed to produce hydrogen continuously up to 48 h at pH 3.9.  相似文献   

11.
There has been a great interest in fermentative hydrogen production during recent decades. However, the low H2 yield associated with fermentative hydrogen production process continues to hinder its industrial application. It is delectable that a maximum 3.9 mol H2 per mol glucose was obtained in fed-batch fermentation mode with a butyric acid over-producing Clostridium tyrobutyricum mutant, which to our knowledge is the highest H2 yield ever got in the fermentation process with Clostridium sp. This study aimed to better understand the change of flux profile within the whole metabolic network and to conduct the metabolic flux analysis of fermentative hydrogen production. For the first time, we constructed a metabolic flux model for the anaerobic glucose metabolism of C. tyrobutyricum ATCC 25755, and revealed the internal mechanism responsible for the redistribution of the carbon flux in the mutant strain in comparison with the wide-type. The MFA methodology was used to study the fractional flux response to variations in operational pH, and revealed that pH was a significant operational parameter effecting on the fermentative hydrogen production process. Furthermore, the presence of NADH-ferredoxin oxidoreductase activity in this anaerobe was demonstrated. By measuring the activities of related enzymes in the biosynthesis pathway of hydrogen, we thus concluded that the increased specific activities of both NFOR and hydrogen-catalyzing enzyme (hydrogenase) would be attributed to the hydrogen over-producing.  相似文献   

12.
Dark fermentative hydrogen production by a hot spring culture was studied from different sugars in batch assays and from xylose in continuous stirred tank reactor (CSTR) with on-line pH control. Batch assays yielded hydrogen in following order: xylose > arabinose > ribose > glucose. The highest hydrogen yield in batch assays was 0.71 mol H2/mol xylose. In CSTR the highest H2 yield and production rate at 45 °C were 1.97 mol H2/mol xylose and 7.3 mmol H2/h/L, respectively, and at 37 °C, 1.18 mol H2/mol xylose and 1.7 mmol H2/h/L, respectively. At 45 °C, microbial community consisted of only two bacterial strains affiliated to Clostridium acetobutulyticum and Citrobacter freundii, whereas at 37 °C six Clostridial species were detected. In summary hydrogen yield by hot spring culture was higher with pentoses than hexoses. The highest H2 production rate and yield and thus, the most efficient hydrogen producing bacteria were obtained at suboptimal temperature of 45 °C for both mesophiles and thermophiles.  相似文献   

13.
To achieve more stable bio-hydrogen (bioH2) production from non-food feedstocks, stable feedstock preparations of marine biomass and an efficient bioH2 system using marine bacteria under saline conditions are two important key technologies that needed to be developed. Vibrio tritonius strain AM2, which was isolated from the gut of a marine invertebrate, was cultured under various conditions in marine broth (at initial 2.25% (w/v) NaCl) supplemented with mannitol, a seaweed carbohydrate, to evaluate its hydrogen production. The maximum molar yield of bioH2 was recorded as 1.7 mol H2/mol mannitol at pH 6 and 37 °C. The mannitol-grown cells had higher yields of bioH2 than the glucose-grown cells in the pH range 5.5–7.5. Compared to glucose, mannitol might be a better substrate for bioH2 production using strain AM2. Fermentation product profiling revealed that strain AM2 might be utilising the formate-hydrogen pathway for bioH2 production. Furthermore, strain AM2 was able to produce hydrogen from powdered brown macroalgae containing 31.1% dry weight of mannitol. The molar yield of hydrogen reached 1.6 mol H2/mol mannitol contained in the seaweed feedstock. In conclusion, strain AM2 has the ability to produce hydrogen from mannitol with high yields even under saline conditions.  相似文献   

14.
A thermophilic hydrogen producer was isolated from hot spring sediment and identified as Thermoanaerobacterium thermosaccharolyticum KKU19 by biochemical tests and 16S rRNA gene sequence analysis. The strain KKU19 showed the ability to utilize various kinds of carbon sources. Xylose was the preferred carbon source while peptone was the preferred organic nitrogen source. The optimum conditions for hydrogen production and cell growth on xylose were an initial pH of 6.50, temperature of 60 °C, a carbon to nitrogen ratio of 20:1, and a xylose concentration of 10.00 g/L. This resulted in a maximum cumulative hydrogen production, hydrogen production rate and hydrogen yield of 3020 ± 210 mL H2/L, 3.95 ± 0.20 mmol H2/L h and 2.09 ± 0.02 mol H2/mol xylose consumed, respectively. Acetic and butyric acids were the main soluble metabolite products suggesting acetate and butyrate type fermentation.  相似文献   

15.
Pantoea agglomerans BH18, isolated from mangrove sludge, could produce hydrogen under marine culture condition. To improve the hydrogen-producing capacity of this strain, we constructed a stable transposon-mutagenized library of P. agglomerans BH18. A Tn7-based transposon was randomly inserted into genomic DNA of P. agglomerans BH18. Mutants were identified by kanamycin resistance and amplification of the inserted transposon sequences. A transposon mutant, named as strain TB212, was screened for the highest hydrogen production ability. The total volume of hydrogen gas evolved by this mutant strain TB212 was 60% higher than that of the wild type. The mutant strain TB212 was able to produce hydrogen over a wide range of initial pH from 5.0 to 10.0, with an optimum initial pH of 7.0, and hydrogen production was 2.52 ± 0.02 mol H2/mol glucose (mean ± S.E.) under marine culture condition. The mutant strain TB212 could produce hydrogen at the salt concentration from 3 to 6%. It was concluded that the transposon-mutagenized library may be a useful tool for investigation of high efficiency hydrogen-producing bacteria.  相似文献   

16.
A mesophilic alkaline tolerant fermentative microbe was isolated from estuarine sediment samples and designated as Clostridium butyricum TM-9A, based on 16S rRNA gene sequence. Batch experiments were conducted for investigation of TM-9A strain for its growth and hydrogen productivity from glucose, in an iron containing basal solution supplemented with yeast extract as organic nitrogen source. Hydrogen production started to evolve when cell growth entered exponential phase and reached maximum production rate at late exponential phase. Maximum hydrogen production was observed at 37 °C, initial pH of 8.0 in the presence of 1% glucose. Optimization of process parameters resulted in increase in hydrogen yield from 1.64 to 2.67 mol of H2/mol glucose. Molar yield of H2 increased further from 2.67 to 3.1 mol of H2/mol of glucose with the decrease in hydrogen partial pressure, obtained by lowering the total pressure in the head space of the batch reactor. Acetate and butyrate were the measure volatile fatty acids generated during hydrogen fermentation. TM-9A strain produced hydrogen efficiently from a range of pentose and hexose sugars including di-, tri and poly-saccharides like; xylose, ribose, glucose, rhamnose, galactose, fructose, mannose, sucrose, arabinose, raffinose, cellulose, cellobiose and starch.  相似文献   

17.
A new isolated photosynthetic bacterium, Rubrivivax gelatinosus M002, can produce hydrogen with glucose or lactate as sole carbon source, and grow on butyrate and acetate without hydrogen evolution. Experiments on studying its hydrogen production performance from glucose mixed with acetate, butyrate or lactate were carried out. The results showed that the hydrogen yield increased significantly and the pH value of the photo-fermentations could retain around 7 in these mixed carbon sources cultures. A hydrogen yield of 9.9 mol H2/mol-glucose was observed when 20 mM acetate and 15 mM glucose was co-fed as substrate. The maximum hydrogen production rate was 44 mL/(L·h), which was 37.5% higher than the highest rate obtained with glucose as sole carbon source. The results suggest an alternative way for high-yield hydrogen production with mixed carbon source in one-step process instead of two-step fermentation process.  相似文献   

18.
Statistical experimental designs were applied for the optimization of medium constituents for hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Using Plackett–Burman design, xylose, FeSO4 and peptone were identified as significant variables which highly influenced hydrogen production. The path of steepest ascent was undertaken to approach the optimal region of the three significant factors. These variables were subsequently optimized using Box–Behnken design of response surface methodology (RSM). The optimum conditions were found to be xylose 16.15 g/L, FeSO4 250.17 mg/L, peptone 2.54 g/L. Hydrogen production at these optimum conditions was 1149.9 ± 65 ml H2/L medium. Under different carbon sources condition, the cumulative hydrogen volume were 1217 ml H2/L xylose medium, 1102 ml H2/L glucose medium and 977 ml H2/L sucrose medium; the maximum hydrogen yield were 2.0 ± 0.05 mol H2/mol xylose, 0.64 mol H2/mol glucose. Fermentative hydrogen production from xylose by Enterobacter sp. CN1 was superior to glucose and sucrose.  相似文献   

19.
The fermentative hydrogen production capability of the newly isolated Clostridium sp. 6A-5 bacterium was studied in a batch cultivation experiment. Various culture conditions (temperature, initial pH, and glucose concentration) were evaluated for their effects on cell growth and hydrogen production (including the yield and rate) of Clostridium sp. 6A-5. Optimal cell growth was observed at 40 °C, initial pH 7.5–8, and glucose concentration 16–26 g/L. The optimal hydrogen yield was obtained at 43 °C, initial pH 8, and glucose concentration 10–16 g/L. Hydrogen began to evolve when cell growth entered the mid-exponential phase and reached the maximum production rate at the late exponential and stationary phases. The maximum hydrogen yield, and rate were 2727 mL/L, and 269.3 mL H2/L h, respectively. These results indicate that Clostridium sp. 6A-5 is a good candidate for mesophilic fermentative hydrogen production.  相似文献   

20.
Thermophilic hydrogen production from xylan by Thermoanaerobacterium thermosaccharolyticum KKU-ED1 isolated from elephant dung was investigated using batch fermentation. The optimum conditions for hydrogen production from xylan by the strain KKU-ED1 were an initial pH of 7.0, temperature of 55 °C and xylan concentration of 15 g/L. Under the optimum conditions, the hydrogen yield (HY), hydrogen production rate (HPR) and xylanase activity were 120.05 ± 15.07 mL H2/g xylan, 11.53 ± 0.19 mL H2/L h and 0.41 units/mL, respectively. The optimum conditions were then used to produce hydrogen from 62.5 g/L sugarcane bagasse (SCB) (equivalent to 15 g/L xylan) in which the HY and HPR of 1.39 ± 0.10 mL H2/g SCB (5.77 ± 0.41 mL H2/g xylan) and 0.66 ± 0.04 mL H2/L h, respectively, were achieved. In comparison to the other strains, the HY of the strain KKU-ED1 (120.05 ± 15.07 mL H2/g xylan) was close to that of Clostridium sp. strain X53 (125.40 mL H2/g xylan) and Clostridium butyricum CGS5 (90.70 mL H2/g xylan hydrolysate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号