首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 1 kW class anode-supported flat tubular SOFC stack for intermediate temperature (700–800 °C) operation was fabricated and operated in this study. For this purpose, we fabricated anode-supported flat tubular cells by optimization of the current collecting method and the induction brazing process. After that, we designed a compact fuel and air manifold by adopting a simulation technique to uniformly supply fuel and air gas into the stack and a unique seal and insulation method to make a more compact stack. To assemble the stack, the prepared anode-supported flat tubular cells with an effective electrode area of 90 cm2 were connected in series to 30 bundles, in which one unit bundle consists of two flat tubular cells connected in parallel. The performance of the stack in 3% humidified H2 and air at 750 °C showed a maximum electrical power of 921 W (fuel utilization ratio = 25.2%).  相似文献   

2.
Fabricating a large-area unit cell is very important for the development of solid oxide fuel cell (SOFC) stack. In this study, details of sintering process of half cell with NiO-yttria stabilized zirconia (YSZ) anode-supported YSZ thin electrolyte film fabricated by co-tape casting have been discussed. The results demonstrates that the shrinkages and shrinking rates mismatches between the electrolyte and the anode can be controlled by the organic additive content in the anode slurry composition and heating rate. Low heating rate suppresses the cracks formation in the electrolyte films. A warp-free unit cell with size of 100 × 100 mm2 and dense electrolyte has been successfully fabricated. A power of 22.2 W, with a power density of 0.27 W cm−2 has been achieved at 0.7 V and 750 °C in O2/humidified H2 atmosphere. The area specific resistance of the cell is 1.20 Ω cm2 at 0.7 V and 750 °C.  相似文献   

3.
Anode-supported cone-shaped tubular solid oxide fuel cells (SOFCs) are successfully fabricated by a phase inversion method. During processing, the two opposite sides of each cone-shaped anode tube are in different conditions--one side is in contact with coagulant (the corresponding surface is named as “W-surface”), while the other is isolated from coagulate (I-surface). Single SOFCs are made with YSZ electrolyte membrane coated on either W-surface or I-surface. Compared to the cell with YSZ membrane on W-surface, the cell on I-surface exhibits better performance, giving a maximum power density of 350 mW cm−2 at 800 °C, using wet hydrogen as fuel and ambient air as oxidant. AC impedance test results are consistent with the performance. The sectional and surface structures of the SOFCs were examined by SEM and the relationship between SOFC performance and anode structure is analyzed. Structure of anodes fabricated at different phase inversion temperature is also investigated.  相似文献   

4.
Biogas (60%-CH4, 40%- CO2) is a potential source of renewable energy when used as energy feedstock for solid oxide fuel cells (SOFC), but releases biogenic CO2 emissions. Hybrid SOFC performance can be affected by fuel composition and reformer performance. Biohythane (58%-CH4, 35%-CO2 and 7% H2) can be a better alternative providing balance between energy and biogenic emissions. Biohythane performance is studied for a 120 kW SOFC stack using ASPEN process model and compared with other feed stocks. This work is the first to study and report on the application of biohythane in SOFC systems. Biohythane was found to produce less biogenic CO2 emissions and 6% less CO at the reformer than biogas. Comparisons show that biohythane provides better efficiencies in hybrid SOFC systems. Sensitivity studies recommends operation of stack with biohythane at Steam to Carbon Ratio (STCR) = 2.0, i = 200 mA cm−2 and UF = 0.85 respectively.  相似文献   

5.
Anode supported solid oxide fuel cells (SOFCs) have been extensively investigated for their ease of fabrication, robustness, and high electrochemical performance. SOFCs offer a greater flexibility in fuel choice, such as methane, ethanol or hydrocarbon fuels, which may be supplied directly on the anode. In this study, SOFCs with an additional Ni–Fe layer on a Ni–YSZ support are fabricated with process variables and characterized for a methane fuel application. The addition of Ni–Fe onto the anode supports exhibits an increase in performance when methane fuel is supplied. SOFC with a Ni–Fe layer, sintered at 1000 °C and fabricated using a 20 wt% pore former, exhibits the highest value of 0.94 A cm−2 and 0.85 A cm−2 at 0.8 V with hydrogen and methane fuel, respectively. An impedance analysis reveals that SOFCs with an additional Ni–Fe layer has a lower charge transfer resistance than SOFCs without Ni–Fe layer. To obtain the higher fuel cell performance with methane fuel, the porosity and sintering temperature of an additional Ni–Fe layer need to be optimized.  相似文献   

6.
Herein a chemical reduction method is proposed in order to modify the solid oxide fuel cells (SOFC) traditional cathode material La0.8Sr0.2MnO3−x (LSM). Silver nanoparticles were prepared by the reduction of ammoniacal silver nitrate with ascorbic acid in dilute aqueous solutions containing PVP. The obtained LSM–Ag composite powders were characterized by XRD, SEM, EDX, and STEM. The results showed that the LSM–Ag composite powder possess an elaborated fine structure with a homogeneous distribution of Ag and LSM, which effectively shortens the diffusion pathway for electrons and adsorbed oxygen. The electrochemical performance of the LSM–Ag cathode with different Ag loadings was investigated. A cathode loading with 1 wt.% Ag exhibited an area specific resistance as low as 0.45 Ω cm2 at 750 °C, compared to around 1.1 Ω cm2 for a pure LSM electrode. Similarly an anode-supported SOFC with 1 wt.% Ag in the cathode shows a peak power density of 1199 mW cm−1, higher than the value of 717 mW cm−1 achieved for a similar cell with a LSM cathode. Increasing the Ag loading is shown to have an insignificant effect on improving electrocatalytic performance at 750 °C, however it can increase output power at 650 °C.  相似文献   

7.
Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual-layer coating is deposited on SUS 430 alloy by plasma spray for solid oxide fuel cell (SOFC) interconnect application. The phase structure, area specific resistance (ASR), and morphology of the coating are studied. A two-cell stack is also assembled and tested to evaluate coating performance in an actual SOFC stack. The NiCr/LSM coating adheres well to the SUS 430 alloy after oxidation in air at 800 °C for 2800 h. The ASR and its increasing rate of coated alloy are 25 mΩ cm2 and 0.0017 mΩ cm2/h, respectively. In an actual stack test, the maximum output power density of the stack repeating unit increases from 0.32 W cm−2 to 0.45 W cm−2 because of the application of NiCr/LSM coating. The degradation rate of the stack repeating unit with no coating is 4.4%/100 h at a current density of 0.36 A cm−2, whereas the stack repeating unit with NiCr/LSM coating exhibits no degradation. Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual-layer coating can remarkably improve the thermal stability and electrical performance of metallic interconnects for SOFCs.  相似文献   

8.
This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kWel SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc.  相似文献   

9.
A compact SOFC power generation system was developed by integrating a 1 kW SOFC stack and balance-of-plant. The system was designed for dual-fuel operation using both natural gas (NG) and liquefied petroleum gas (LPG). An adiabatic pre-reformer was employed in a fuel processing system to convert C2+ hydrocarbons in the fuel into CH4-rich gas which was further processed in a main reformer to produce H2-rich gas for the SOFC stack. The SOFC system was operated for 350 h under thermally self-sustaining condition, and on-load fuel switching from NG to LPG was carried out during the operation. The system performance was not significantly affected by NG/LPG composition ratios and the performance was stable during continuous operation in NG or LPG.  相似文献   

10.
A novel design of cone-shaped tubular segmented-in-series solid oxide fuel cell (SOFC) stack is presented in this paper. The cone-shaped tubular anode substrates are fabricated by slip casting technique and the yttria-stabilized zirconia (YSZ) electrolyte films are deposited onto the anode tubes by dip coating method. After sintering at 1400 °C for 4 h, a dense and crack-free YSZ film with a thickness of about 7 μm is successfully obtained. The single cell, NiO-YSZ/YSZ (7 μm)/LSM-YSZ, provides a maximum power density of 1.78 W cm−2 at 800 °C, using moist hydrogen (75 ml min−1) as fuel and ambient air as oxidant.A two-cell-stack based on the above-mentioned cone-shaped tubular anode-supported SOFC is fabricated. Its typical operating characteristics are investigated, particularly with respect to the thermal cycling test. The results show that the two-cell-stack has good thermo-mechanical properties and that the developed segmented-in-series SOFC stack is highly promising for portable applications.  相似文献   

11.
A 3-cell stack of anode supported planar solid oxide fuel cell was built to evaluate the application of an external-manifold design in this research. This short stack was operated with hydrogen as fuel and air as oxidant at 750 °C. The stack had an OCV of 3.36 V, produced about 100 W in total power with a power density of 0.56 W/cm2. The stack also underwent 51 h degradation test at the current density of 0.55 A/cm2. The test results have demonstrated that this external-manifold stack had an excellent and steady performance during the test. Computer simulation was employed to help optimizing the parameters of the design and explaining the different performances between the cells. The simulation results suggested that the external-manifold design could generate a uniform gas distribution for a short stack, and the different performances of the individual cells were mainly caused by the uneven temperatures distribution between the cells.  相似文献   

12.
The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.  相似文献   

13.
Premixed safety gas is conventionally used to keep the anode of a solid oxide fuel cell (SOFC) under reducing conditions during heat-up. This article presents the results of an experimental study to heat up a SOFC system and stack without the said premixed safety gases, i.e. by utilizing a natural gas pre-reformer and anode off-gas recycling (AOGR). Firstly, ex-situ experiments were conducted to investigate the operability of a pre-reformer during system heat-up. It was found that any oxygen fed to the reformer hinders the reforming reactions at low temperatures. Secondly, based on the ex-situ findings, series of heat-up cycles were conducted with a complete 10 kW system using AOGR and a planar SOFC stack. In these experiments it was found that the system heat-up is possible with fuel gas and steam only, without the need for premixed reducing safety gases. Use of the fuel gas instead of a premixed safety gas did not result in a significant performance loss in the SOFC stack. Therefore, such a heat-up strategy was developed for SOFC systems that reduces the need of premixed safety gas storage space and thus decreases the system cost.  相似文献   

14.
Direct internal and external reforming operations on Ni-samaria-doped ceria (SDC) anode with the practical size solid oxide fuel cell (SOFC) at intermediate temperatures from 600 to 750 °C are carried out to reveal the reforming activities and the electrochemical activities, being compared with the hydrogen-fueled power generation. The cell performance with direct internal and external steam reforming of methane and their limiting current densities were almost the same irrespective of the progress of reaction in the methane reformate at 700 and 750 °C. The durability test for 5.5 h at 750 °C with direct internal reforming operation confirmed that the cell performance did not deteriorate. The operation temperature of the cell controlled the reforming activities on the anode, and the large size electrode gave rise to high conversion due to the slow space velocity of the steam reforming. Direct internal steam reforming attained sufficient level of conversion for SOFC power generation with methane at 700 and 750 °C on the large Ni-SDC cermet anode.  相似文献   

15.
Three configurations of solid oxide fuel cell (SOFC) micro-combined heat and power (micro-CHP) systems are studied with a particular emphasis on the application for single-family detached dwellings. Biogas is considered to be the primary fuel for the systems studied. In each system, a different method is used for processing the biogas fuel to prevent carbon deposition over the anode of the cells used in the SOFC stack. The anode exit gas recirculation, steam reforming, and partial oxidation are the methods employed in systems I–III, respectively. The results predicted through computer simulation of these systems confirm that the net AC electrical efficiency of around 42.4%, 41.7% and 33.9% are attainable for systems I–III, respectively. Depending on the size, location and building type and design, all the systems studied are suitable to provide the domestic hot water and electric power demands for residential dwellings. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required for the SOFC stack to generate around 1 kW net AC electric power, the thermal-to-electric ratio (TER), the net AC electrical and CHP efficiencies, the biogas fuel consumption, and the excess air required for controlling the SOFC stack temperature is also studied through a detailed sensitivity analysis. The results point out that the cell design voltage is higher than the cell voltage at which the minimum number of cells is obtained for the SOFC stack.  相似文献   

16.
A novel portable electric power generation system, fuelled by ammonia, is introduced and its performance is evaluated. In this system, a solid oxide fuel cell (SOFC) stack that consists of anode-supported planar cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode is used to generate electric power. The small size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. The results predicted through computer simulation of this system confirm that the first-law efficiency of 41.1% with the system operating voltage of 25.6 V is attainable for a 100 W portable system, operated at the cell voltage of 0.73 V and fuel utilization ratio of 80%. In these operating conditions, an ammonia cylinder with a capacity of 0.8 l is sufficient to sustain full-load operation of the portable system for 9 h and 34 min. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required in the SOFC stack, the first- and second-law efficiencies, the system operating voltage, the excess air, the heat transfer from the SOFC stack, and the duration of operation of the portable system with a cylinder of ammonia fuel, are also studied through a detailed sensitivity analysis. Overall, the ammonia-fuelled SOFC system introduced in this paper exhibits an appropriate performance for portable power generation applications.  相似文献   

17.
18.
It is well known that cell imbalance can lead to failure of batteries. Prior theoretical modeling has shown that similar failure can occur in solid oxide fuel cell (SOFC) stacks due to cell imbalance. Central to failure model for SOFC stacks is the abnormal operation of a cell with cell voltage becoming negative. For investigation of SOFC stack failure by simulating abnormal behavior in a single cell test, thin yttria-stabilized zirconia (YSZ) electrolyte, anode-supported cells were tested at 800 °C with hydrogen as fuel and air as oxidant with and without an applied DC bias. When under a DC bias with cell operating under a negative voltage, rapid degradation occurred characterized by increased cell resistance. Visual and microscopic examination revealed that delamination occurred along the electrolyte/anode interface. The present results show that anode-supported SOFC stacks with YSZ electrolyte are prone to catastrophic failure due to internal pressure buildup, provided cell imbalance occurs. The present results also suggest that the greater the number of cells in an SOFC stack, the greater is the propensity to catastrophic failure.  相似文献   

19.
In this study, performance of solid oxide fuel cell (SOFC) connected with paper-structured catalyst (PSC) was evaluated in the direct feed of wet oleic fatty acid methyl ester (oleic-FAME, C19H36O2), which is a mono-unsaturated component of practical biodiesel fuels (BDFs), in the steam to carbon ratio (S/C) range between 2.0 and 3.5, and high current density of 1 A cm−2 (at 0.7 V) was recorded at 800 °C. Long term stability of oleic-FAME fueled SOFC was achieved by the incorporation of PSC into SOFC even under severe operating condition prone to coking (direct feed of unsaturated hydrocarbon with carbon number 19 and low S/C ratio of 2.0). After 100 h test, coking was not observed in both SOFC anode and PSC.  相似文献   

20.
Recently, metal-based solid oxide fuel cells (SOFCs) receive much attention as new power converting systems, and reliable sealing is an essential requirement for the metal-based SOFC stacks. In this study, metal-based SOFC stacks with a reliable sealing method are developed for transportation applications. For successful development, bolt-spring and hydraulic compression methods for stack tightening are discussed in terms of their applicability to vehicles. Then, detailed stack designs are developed to obtain sufficient compressive stress on the surfaces of the sealing gaskets based on the finite element method (FEM). To maintain the compression and heat insulation of the stack, a hot box is designed based on the thermogravimetric properties, shrinkage behaviors, and mechanical properties of sealing gaskets of mica and Thermiculite 866LS, and ceramic fiber insulating board. As a result, a 1-cell stack unit is successfully fabricated and tested based on the designs, and a sealing rate of 100 ± 0.78% is achieved at an operating temperature of 800 °C. This study investigates comprehensive stack and sealing design processes, and it has broad implications for reliable stack development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号