共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2020,45(15):9004-9009
We developed a new separator with a multi-hole structure (MHS) in the rib region for open-cathode polymer electrolyte membrane fuel cell (OC-PEMFC) stack to improve performance. The electrochemical current–voltage performance results clearly demonstrate that the performance of the OC-PEMFC stack using the MHS design was higher than that using the conventional parallel design at high current regions (i.e., over 7 A). The current increased by 11.24% at 12 V (i.e., 0.6 V/cell). The effects of supplying additional oxygen and removing generated water were identified as factors improving the performance. The individual cell voltages demonstrate that the initial value of standard deviation for the OC-PEMFC stack using MHS was somewhat high, but it exhibited better uniformity at higher current regions. 相似文献
2.
Cold start from subzero temperature is one of the key barriers, which prevents proton exchange membrane fuel cell (PEMFC) from further commercialization. In this paper, we have applied the printed circuit board (PCB) technology to study the current density distributions of PEMFC and optimized the technology under rapid cold start. The results show that increasing the initial load, and the setup temperature can help to lower the cold start time and achieve rapid warm-up of PEMFC. The cell can be rapidly cold started for 10 s at −5 °C and 55 s at −10 °C under 0.2 V operation condition, but it failed at −15 °C and −20 °C. The inlet region and middle region produce half of the total current before the overall peak current density is reached, which is important for the successful cold start. Based on these characteristics, we optimized the rapid cold start strategy by co-operation of hot reactant gas and waste heat generation of PEMFC. It becomes possible to start up the PEMFC at temperatures down to −20 °C with about 20 min. 相似文献
3.
Air-breathing miniature planar stack using the flexible printed circuit board as a current collector
Sung Han Kim Hye Yeon Cha Craig M. Miesse Jae Hyuk Jang Yong Soo Oh Suk Won Cha 《International Journal of Hydrogen Energy》2009
To maximize power density, the volume of a fuel cell stack should be reduced by miniaturizing the stack components. In this study, thin flexible printed circuit board was utilized as a current collector in order to reduce an air-breathing monopolar stack's volume. Also, the effects of varying the geometry and opening ratios of the ports to the cathode on stack performance were evaluated in order to determine the optimal cathode structure. Use of the thin current collector and cathode port optimization resulted in an output of 3.5 W from an 18 cm3 stack (power density of 350 mW/cm2). The effects of orientation under passive air-breathing operation were determined to be nearly negligible. All data was measured at ambient pressure and temperature, baseline conditions for mobile fuel cell intended for use in consumer electronics. 相似文献
4.
Computational study of forced air-convection in open-cathode polymer electrolyte fuel cell stacks 总被引:1,自引:0,他引:1
A mathematical model for a polymer electrolyte fuel cell (PEFC) stack with an open-cathode manifold, where a fan provides the oxidant as well as cooling, is derived and studied. In short, the model considers two-phase flow and conservation of mass, momentum, species and energy in the ambient and PEFC stack, as well as conservation of charge and a phenomenological membrane and agglomerate model for the PEFC stack. The fan is resolved as an interfacial condition with a polynomial expression for the static pressure increase over the fan as a function of the fan velocity. The results suggest that there is strong correlation between fan power rating, the height of cathode flow-field and stack performance. Further, the placement of the fan - either in blowing or suction mode - does not give rise to a discernable difference in stack performance for the flow-field considered (metal mesh). Finally, it is noted that the model can be extended to incorporate other types of flow-fields and, most importantly, be employed for design and optimization of forced air-convection open-cathode PEFC stacks and adjacent fans. 相似文献
5.
The analysis of the electrochemical behaviour of polymer electrolyte fuel cells (PEFC) both in time and frequency domain requires appropriate impedance models. Simple impedance models with lumped parameters as resistances and capacitances or Warburg impedances do have limitations: often the validity is limited to a certain frequency range, effects at very low or very high frequencies can not be described properly. 相似文献
6.
The dynamic behavior of polymer electrolyte fuel cells was investigated experimentally at sudden load change conditions. The present study mainly focused on the variation of membrane hydration due to self-humidification. Steady-state results for various temperatures and humidities were used as the basic data for the analysis of dynamic behavior. Electrochemical impedance spectroscopy (EIS) showed that the ohmic resistance was reduced with the increase of humidity and current while the total polarization resistance including the mass transfer effect showed various trends according to cell temperature. The dynamic behavior of the cells was measured with time. The current increment just after an abrupt voltage reduction jumped to a certain level and then increased gradually, showing a logarithmic-shape curve. The stabilization time to steady-state was determined by using the curve-fitted lines representing the variation of the current increment at each operating condition. The stabilization time showed various trends according to cell temperature, humidity, and voltage range. 相似文献
7.
A miniature air breathing compact direct formic acid fuel cell (DFAFC), with gold covered printed circuit board (PCB) as current collectors and back boards, is designed, fabricated and evaluated. Effects of formic acid concentration and catalyst loading (anodic palladium loading and cathodic platinum loading) on the cell performance are investigated and optimized fuel concentration and catalyst loading are obtained based on experimental results. A maximum power density of 19.6 mW cm−2 is achieved at room temperature with passive operational mode when 5.0 M formic acid is fed and 1 mg cm−2 catalyst at both electrodes is used. The home-made DFAFC also displays good long-term stability at constant current density. 相似文献
8.
Electrochemical impedance spectroscopy (EIS) was employed for in situ diagnosis for polymer electrolyte membrane fuel cells during operation. First, EIS was measured as a function of operation parameters such as applied current density, gas flow rates and gas humidification temperature. The resistance that correlated with conductivity of the membrane and the contact resistance between bipolar plate and gas diffusion layer (GDL) was set as Rm in the assumed equivalent circuit. The charge transfer resistances were considered for cathode (Rct(C)). The value of Rct(C) was sensitive to the parameters that affected cell voltage. Additionally, the diffusion resistance (Rd) was ascribed to the effect of oxygen supply and drainage of generated water. Second, the influence of corrosion of type 430 stainless steel bipolar plates was evaluated by EIS method during operation. Corrosion of the stainless steel bipolar plates resulted in an increase in the value of Rd. 相似文献
9.
Thomas Kadyk Richard Hanke-Rauschenbach Kai Sundmacher 《International Journal of Hydrogen Energy》2012
Dehydration phenomena in a PEM fuel cell were investigated by nonlinear frequency response analysis (NFRA) in a differential H2/H2 cell. The linear H1,0 spectra, which are equal to classic EIS spectra, showed not only an increase of the membrane resistance but also an increase of the anode reaction resistance, caused by dehydration leading to the decrease of the protonic conductivity of the polymer network in the catalyst layer. With this, active sites with long protonic pathes to the membrane become inactive. In order to further clarify this effect, modelling work was used. Therefore, proton transport was incorporated into an existing model of a differential H2/H2 cell. Finally, the key features of NFRA spectra under dehydration and CO poisoning are compared in order to discuss the suitability of NFRA for unambiguous diagnosis of PEMFC. It can be seen that while the linear spectrum is not sufficient to distinguish between both cases, the second order frequency response functions can be used for discrimination. 相似文献
10.
《International Journal of Hydrogen Energy》2019,44(14):7564-7573
Proton Exchange Membrane Fuel Cell can have a large active area, and the working condition in different areas can be entirely different. Localized electrochemical impedance spectroscopy can directly observe the proton exchange membrane fuel cell internal reaction conditions. In this work, localized electrochemical impedance spectroscopy test system based on print circuit board is implemented in a 50 cm2 multi-channel serpentine flow fields. The localized electrochemical impedance spectroscopy performances of different segments with different cathode stoichiometry (1.8, 2.3 and 2.8) at different current density (100 mA cm−2, 500 mA cm−2 and 900 mA cm−2) are studied. The result demonstrates that the fuel cell may suffer from local drying and flooding at the same time. To make full use of the potential of a fuel cell, a suitable cathode stoichiometry should be identified to control the drying of the inlet and the flooding of the outlet at the same time. It is shown that a cathode stoichiometry of 2.3 is close to the optimum cathode stoichiometry to keep the fuel cell in good consistency without gas waste. Besides, a current density distribution measurement is performed to verify the conclusions of this work. 相似文献
11.
Jincheol Kim Dong-Min Kim Sung-Yug Kim Suk Woo Nam Taegyu Kim 《International Journal of Hydrogen Energy》2014
In the present study, a short circuit controller for use in the humidification of polymer electrolyte membrane fuel cells was developed for unmanned aerial vehicles (UAVs). Fuel cells (FCs) require an external humidifier to avoid drying up. Particularly in UAV applications, humidity control is more important because the boiling point of water decreases with increase in flight altitude. In this study, overcurrent was generated by short-circuiting an FC to humidify the electrolyte membrane and improve the electric power output. An FC controller incorporating a short circuit unit was developed, and a battery was hybridized with the FC to compensate the power when the latter was short-circuited. The performance of the FC was evaluated for the interval (period) and duration of short circuit. Using this method, the power output was improved by 16% when short circuit control was operated at the optimal condition. 相似文献
12.
Jeawoo Jung Young-Hoon Chung Hee-Young Park Jonghee Han Hyoung-Juhn Kim Dirk Henkensmeier Sung Jong Yoo Jin Young Kim So Young Lee Kwang Ho Song Hyun S. Park Jong Hyun Jang 《International Journal of Hydrogen Energy》2018,43(32):15457-15465
The effects of varying the applied voltage and relative humidity of feed gases in degradation tests of polymer electrolyte membrane fuel cells (PEMFCs) were analyzed using electrochemical impedance spectroscopy (EIS). A transmission line model that considers the proton-transport resistance in the cathode catalyst layer was used to analyze impedance spectra obtained from degraded PEMFCs. As the applied cell voltage was increased from 1.3 to 1.5 V to induce accelerated degradation, the cell performance decayed significantly due to increased charge- and proton-transfer resistance. The PEMFC degradation was more pronounce at higher relative humidity (RH), i.e. 100% RH, as compared with that observed under 50% RH. Furthermore, changes in the charge transfer resistance of the electrode accompanied changes in the ionic conductivity in the PEMFC catalyst layer. Although the initial ionic and charge-transfer resistances in the catalyst layer were lower under higher RH conditions, the impedance results indicated that the performance degradation was more significant at higher water contents in the electrode due to the consequential carbon corrosion, especially when higher voltages, i.e. 1.5 V, were applied to the PEMFC single cell. 相似文献
13.
I. Dedigama P. Angeli K. Ayers J.B. Robinson P.R. Shearing D. Tsaoulidis D.J.L. Brett 《International Journal of Hydrogen Energy》2014
An optically transparent polymer electrolyte membrane (PEM) water electrolysis cell was studied using a high-speed camera, thermal imaging and electrochemical impedance spectroscopy to examine the relationship between flow and electrochemical performance. The flow regime spans bubble and slug flow, depending on the rate of gas formation (current density) and water feed rate. Electrochemical impedance spectroscopy (EIS) shows that there is a reduction in mass transport limitation associated with the transition to slug flow. 相似文献
14.
《International Journal of Hydrogen Energy》2019,44(42):23784-23792
A thin and fully dense BaCe0.6Zr0.2Y0.2O3-δ (BCZY) electrolyte for the use of anode-supported protonic fuel cells has been successfully prepared by spin coating using NiO sintering aid. The effects of NiO addition on the electrolyte microstructures and fuel cell performances are also investigated. An appropriate NiO addition has a significant positive contribution to the densification and grain growth of thin BCZY electrolytes. However, too much NiO addition gives rise to NiO aggregation in BCZY electrolyte and deteriorates the cell performance. The enhanced sintering mechanism can be mainly attributed to the oxygen vacancies generated from the NiO decomposition and bulk diffusion of Ni into BCZY perovskites. The fuel cell with a BCZY-3%NiO electrolyte exhibits the highest maximum power density of ~106.6 mW/cm2 at 800 °C among all fuel cells in this study. The electrochemical impedance characteristics of thin BCZY electrolyte fuel cells are further discussed under open circuit conditions. 相似文献
15.
Coated aluminum bipolar plates demonstrate better mechanical strength, ease of manufacturability, and lower interfacial contact resistance (ICR) than graphite composite plates in polymer electrolyte membrane (PEM) fuel cell applications. In this study, coated aluminum and graphite composite bipolar plates were installed in separate single PEM fuel cells and tested under normal operating conditions and cyclic loading. After 1000 h of operation, samples of both the bipolar plates and the membrane electrode assembly (MEA) were collected from both the cathode and the anode sides of the cell and characterized to examine the stability and integrity of the plate coating and evaluate possible changes of the ionic conductivity of the membrane due any electrochemical reaction with the coating material. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis were performed on the land and valley surfaces of the reactant flow fields at both the anode and the cathode sides of the bipolar plates. The measurements were superimposed on the reference to identify possible zones of anomalies for the purpose of conducting focused studies in these locations. The X-ray diffraction (XRD) analysis of samples scraped from the anode and cathode electrodes of the MEA showed the tendency for catalyst growth that could result in power degradation. Samples of the by-product water produced during the single fuel cell operation were also collected and tested for the existence of chromium, nickel, carbon, iron, sulfur and aluminum using mass spectroscopy techniques. The EDX measurements indicated the possibility of dissociation and dissolution of nickel chrome that was used as the binder for the carbide-based corrosion-resistant coating with the aluminum substrate. 相似文献
16.
Mehmet Ozan Ozdemir Md Aman Uddin Selvarani Ganesan Ugur Pasaogullari William P. Collins Leonard Bonville Trent Molter 《International Journal of Hydrogen Energy》2017,42(41):26068-26083
Regular maintenance/cleaning of fuel pipeline and system hardware is an essential requirement in fuel cell operation to prevent contamination. An experimental and analytical study is performed to aid the selection of appropriate cleansers to be used as cleaning agents in polymer electrolyte fuel cell (PEFC). Screening tests for several cleansers are carried out during the injection of samples into the PEFC cathode inlet. One proper agent (naphtha) has shown a fully recoverable and minimal effect on the fuel cell performance and as such is determined as the best cleansing agent. Unlike other samples, naphtha does not contain any metallic components such as sodium or potassium in its composition. Furthermore, PEFC can still operate at ~0.4 V at constant current (1 A/cm2) even with a considerable flow rate (250 μl/min) of the selected cleanser. Detailed analytical analysis of this cleanser is provided by curve fitting the electrochemical impedance spectroscopy data, and evaluation of binary gas diffusion coefficients. It is indicated that performance loss during naphtha exposure is mainly due to the adsorption of contaminants on active Pt sites and an increase in mass transfer resistance. 相似文献
17.
《International Journal of Hydrogen Energy》2020,45(37):18731-18742
Bipolar plate is one of the key components of polymer electrolyte membrane fuel cell. In the present study, metallic plates are explored as bipolar plates in comparison to most generally used high-density graphite plates. Among various metals, stainless steel 316L is preferred due to its low cost, high strength, ease of machining and for its corrosion resistance characteristics. However, the challenges associated with metallic plates are high interfacial contact resistance due to passive oxide layer formation and possible corrosion product during operation in chemically harsh environments, which may contaminate the membrane electrode assembly. Three electrically conductive and corrosion resistant coatings namely Titanium Nitrides, Plasma Nitride, and Gold have been coated over the surface of stainless steel 316L metallic plate to overcome these challenges and to explore their impact on fuel cell performance using standard membrane electrode assemblies. These coatings are characterized by X-Ray Diffraction, Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy along with interfacial contact resistance measurements. Further, the coated SS plates have been tested in real time polymer electrolyte membrane fuel cell operation for their use as bipolar plates and their performances have been compared with the fuel cell comprising conventional graphite plates. A cell comprising Titanium Nitride, Gold and Plasma Nitride coated metallic plates exhibit a power density of 430, 720 & 268 mW cm−2 respectively, at an operating fuel cell potential of 0.6 V. Gold coated metallic plate shows comparable polymer electrolyte membrane fuel cell performance in relation to conventional graphite plate. 相似文献
18.
Characterization of water management in metal foam flow-field based polymer electrolyte fuel cells using in-operando neutron radiography 总被引:1,自引:0,他引:1
《International Journal of Hydrogen Energy》2020,45(3):2195-2205
Metal foam flow-fields have shown great potential in improving the uniformity of reactant distribution in polymer electrolyte fuel cells (PEFCs) by eliminating the ‘land/channel’ geometry of conventional designs. However, a detailed understanding of the water management in operational metal foam flow-field based PEFCs is limited. This study aims to provide the first clear evidence of how and where water is generated, accumulated and removed in the metal foam flow-field based PEFCs using in-operando neutron radiography, and correlate the water ‘maps’ with electrochemical performance and durability. Results show that the metal foam flow-field based PEFC has greater tolerance to dehydration at 1000 mA cm−2, exhibiting a ~50% increase in voltage, ~127% increase in total water mass and ~38% decrease in high frequency resistance (HFR) than serpentine flow-field design. Additionally, the metal foam flow-field promotes more uniform water distribution where the standard deviation of the liquid water thickness distribution across the entire cell active area is almost half that of the serpentine. These superior characteristics of metal foam flow-field result in greater than twice the maximum power density over serpentine flow-field. Results suggest that optimizing fuel cell operating condition and foam microstructure would partly mitigate flooding in the metal foam flow-field based PEFC. 相似文献
19.
《International Journal of Hydrogen Energy》2020,45(4):3132-3144
The electrochemical properties and interfacial contact resistance (ICR) of four Zr-based bulk metallic glasses with different compositions are evaluated for PEMFC applications. Based on the results and market demands, the corrosion behavior of the Zr41·2Ti13·8Cu12·5Ni10Be22.5 (numbers indicate at.%) BMG and 304 stainless steel (SS304) in accelerated simulated anode and cathode environments, such as 0.5 M H2SO4 and 2 ppm HF solutions bubbled with pure hydrogen and air at 80 °C, respectively, is further investigated through potentiodynamic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. The performance tests of the single cell with the Zr-based BMG as BPPs are conducted and the maximum power density of the single cell has exceeded 470 mW/cm2. The combination of these results and other properties demonstrate that the Zr-based BMG can be used as the anode or cathode material for metallic bipolar plates. 相似文献
20.
Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells 总被引:1,自引:0,他引:1
Heat management in polymer electrolyte membrane fuel cells (PEMFCs) plays a vital role in stack performance and durability, and overall system efficiency. A computational model assembled by the authors has been used to study the heat generated and distributed in single-cell and two-cell PEMFC stacks, with a focus on temperature variation on the external surfaces of the stack under different heat loads. 相似文献