共查询到20条相似文献,搜索用时 15 毫秒
1.
Viviana Sanchez-Torres Mohd Zulkhairi Mohd Yusoff Chieri Nakano Toshinari Maeda Hiroaki I. Ogawa Thomas K. Wood 《International Journal of Hydrogen Energy》2013
Since the actual role of Escherichia coli hydrogenases on fermentation from glycerol has not been clear, we evaluated the effect of inactivation of each E. coli hydrogenase on cell growth, hydrogen production, organic acids production, and ethanol production. Inactivation of hydrogenase 2 and hydrogenase 3 reduced cell growth, hydrogen and succinate production as well as glycerol utilization while acetate increased. Inactivation of hydrogenase 2 in minimal medium at pH 7.5 impaired hydrogen production, but no significant effect occurred at pH 6.5 or in complex medium. Inactivation of hydrogenase 3 impaired hydrogen production in minimal and rich medium, pH 6.5 and pH 7.5 accumulating formate in all conditions. Therefore during fermentation from glycerol, hydrogenase 3 is the main hydrogenase with hydrogen synthesis activity through the formate hydrogen lyase complex. Hydrogenase 2 seems mainly required for optimum glycerol metabolism rather than hydrogen synthesis. There were no significant impacts by inactivating hydrogenase 1 and hydrogenase 4. 相似文献
2.
Eunhee SeolAyyachamy Manimaran Younga JangSeohyoung Kim You-Kwan OhSunghoon Park 《International Journal of Hydrogen Energy》2011,36(14):8681-8686
Biohydrogen is an ideal energy carrier for mobile chemical fuel cells, but its use is often limited by unavailability of sustained H2 production system(s). Here, we developed a compact system for H2 production from formate based on immobilized cells of recombinant Escherichia coli SH5. Three different matrices were tested as immobilization medium, among which agar showed the best performance in mechanical stability and permeability of substrate(s) and/or gaseous products (H2 and CO2). To explore and optimize the H2 production capability of the immobilized cells, the conditions for cell immobilization including cell loading and agar concentration as well as the factors affecting H2 production rate such as temperature, pH, and substrate concentration were studied in detail. A maximum volumetric production rate of 2.4 L H2 L−1 h−1 was obtained when the immobilized cells were incubated with 350 mM sodium formate at pH 6.5 and 37 °C. Periodic supplementation of 200 mM formate with 20 mM glucose at pH 6.5 maintained the high H2 production rate for a prolonged period of 10 h. We believe that our process can be developed for sustained H2 production and is applicable to the operation of fuel cells in small-scale. 相似文献
3.
Jenni J. Seppälä Antti Larjo Tommi Aho Olli Yli-Harja Matti T. Karp Ville Santala 《International Journal of Hydrogen Energy》2013
Genome-scale model was applied to analyze the anaerobic metabolism of Escherichia coli. Three different methods were used to find deletions affecting fermentative hydrogen production: flux balance analysis (FBA), algorithm for blocking competing pathways (ABCP), and manual selection. Based on these methods, 81 E. coli mutants possessing one gene deletion were selected and cultivated in batch experiments. Experimental results of H2 and biomass production were compared against the results of FBA. Several gene deletions enhancing H2 production were found. Correctness of gene essentiality predictions of FBA for the selected genes was 78% and 77% in glucose and galactose media, respectively. 33% of the mutations that were predicted by FBA to increase H2 production had a positive effect in experiments. Batch cultivation is a simple and straightforward experimental way to screen improvements in H2 production. However, the ability of FBA to predict the H2 production rate cannot be evaluated by batch experiments. Metabolic network models provide a method for gaining broader understanding of the complicated metabolic system of a cell and can aid in prospecting suitable gene deletions for enhancing H2 production. 相似文献
4.
Byung Hoon Jo Jaoon Y.H. Kim Jeong Hyun Seo Hyung Joon Cha 《International Journal of Hydrogen Energy》2014
H2 production under aerobic conditions has been proposed as an alternative method to overcome the fundamentally low yield of H2 production by fermentative bacteria by maximizing the number of electrons that are available for H2. Here, we engineered Vitreoscilla hemoglobin (VHb) in Escherichia coli to study the effects of this versatile oxygen (O2)-binding protein on oxic H2 production in a closed batch system that was supplemented with glucose. The H2 yields that were obtained with the VHb-expressing E. coli were greatly enhanced in comparison to the negative control cells in culture that started with high O2 tensions. The formate hydrogen lyase (FHL) activity of oxically cultured, VHb-expressing cells was also much higher than that of the negative control cells. Through inhibitor studies and time-course experiments, VHb was shown to contribute to the improved H2 yield primarily by increasing the efficiency of cellular metabolism during the aerobic phase before the onset of H2 production and not by working as an O2-scavenger during H2 production. This new approach allowed more substrate to remain to be further utilized for the production of more H2 from limited resources. We expect that VHb can be successfully engineered in potential aerobic H2-producing microbial systems to enhance the overall H2 production yield. In addition, the remarkably high FHL activity of oxically grown, VHb-expressing cells may make this engineered strain an attractive whole-cell biocatalyst for converting formate to H2. 相似文献
5.
Jenni J. Seppälä Jaakko A. PuhakkaOlli Yli-Harja Matti T. KarpVille Santala 《International Journal of Hydrogen Energy》2011,36(17):10701-10708
The effect of coculture of Clostridium butyricum and Escherichia coli on hydrogen production was investigated. C. butyricum and E. coli were grown separately and together as batch cultures. Gas production, growth, volatile fatty acid production and glucose degradation were monitored. Whilst C. butyricum alone produced 2.09 mol-H2/mol-glucose the coculture produced 1.65 mol-H2/mol-glucose. However, the coculture utilized glucose more efficiently in the batch culture, i.e., it was able to produce more H2 (5.85 mmol H2) in the same cultivation setting than C. butyricum (4.62 mmol H2), before the growth limiting pH was reached. 相似文献
6.
Ariane Bisaillon Jonathan Turcot Patrick C. Hallenbeck 《International Journal of Hydrogen Energy》2006
In order to understand some limiting factors in microbial hydrogen fermentation we have examined hydrogen production by different strains of Escherichia coli grown in batch cultures under different limiting nutrient regimes. The effect of mutations in uptake hydrogenases, in lactate dehydrogenase (ldhA), and fhlA, coding for the regulator of formate hydrogen lyase (fhl) component synthesis, were studied. Each mutation contributed to a modest increase in hydrogen evolution and the effects were synergistic. Various elements were used as limiting nutrient. In batch experiments, limitation for sulfate was without great effect. There was some affect of limiting phosphate with yields approaching 1 mol per mol of glucose. However, strains showed the highest yield of hydrogen per glucose (∼2) when cultured at limiting concentrations of either ammonia or glucose. 相似文献
7.
In this paper, specific cases for the interaction between the future electricity-generation mix and a newly-developing hydrogen-production infrastructure is modelled with the model E-simulate. Namely, flexible integrated-gasification combined-cycle units (IGCC) are capable of producing both electricity and hydrogen in different ratios. When these units are part of the electricity-generation mix and when they are not operating at full load, they could be used to produce a certain amount of hydrogen, avoiding the costly installation of new IGCC units for hydrogen production. The same goes for the massive introduction of renewable energies (especially wind), possibly generating excess electricity from time to time, which could then perhaps be used to produce hydrogen electrolytically. 相似文献
8.
Future sustainable production of biofuels will depend upon the ability to use complex substrates present in biomass if the use of simple sugars derived from food crops is to be avoided. Therefore, organisms capable of using a variety of fermentable carbon sources must be found or developed for processes that could produce hydrogen via fermentation. Here we have examined the ability of a metabolically engineered strain of Escherichia coli, DJT135, to produce hydrogen from glucose as well as various other carbon sources, including pentoses. The effects of pH, temperature and carbon source were investigated in batch experiments. Maximal hydrogen production from glucose was obtained at an initial pH of 6.5 and temperature of 35 °C. Kinetic growth studies showed that the μmax was 0.0495 h−1 with a Ks of 0.0274 g L−1 when glucose was the sole carbon source in M9 (1X) minimal medium. Among the many sugar and sugar derivatives tested, hydrogen yields were highest with fructose, sorbitol and d-glucose; 1.27, 1.46 and 1.51 mol H2 mol−1 substrate respectively. 相似文献
9.
Hydrogen producing activity by Escherichia coli hydrogenase 4 (hyf) depends on glucose concentration
Escherichia coli produces molecular hydrogen (H2) during glucose fermentation. This production of H2 occurs via multiple and reversible membrane-associated hydrogenases (Hyd). Dependence of H2 producing rate (VH2) by Hyd-4 (hyf) on glucose concentration was studied at different pHs. During growth on 0.2% glucose at pH 7.5 in JRG3615 (hyfA-B) and JRG3621 (hyfB-R ) mutants (VH2) was decreased ∼6.7 and ∼5 fold, respectively, compared to wild type. Only in JRG3621 mutant at pH 6.5 and 5.5 (VH2) was severely decreased ∼7.8 and ∼3.8 fold, respectively. But when cells were grown on 0.8% glucose no difference between wild type and mutants was detected at any of the tested pHs. The results indicate Hyd-4 H2 producing activity inhibition by high concentration of glucose mainly at pH 7.5. This is of significance to regulate Hyd activity and H2 production by E. coli during fermentation. 相似文献
10.
《International Journal of Hydrogen Energy》2020,45(59):34437-34448
Black liquor (BL) is a by-product in the paper and pulp industry. Although it has good potential for providing energy as an industrial waste, BL's high moisture content limits its usability. In this study, an integrated system to effectively co-produce power and ammonia (NH3) from BL is modeled and evaluated. The modeling and integration are conducted using the principles of exergy recovery and process integration to effectively circulate the energy/heat throughout the whole system. The developed system involves BL evaporation, gasification, syngas chemical looping (SCL), and NH3 synthesis. During SCL process, H2, CO2, and N2-rich gas are produced consecutively in the oxidation, reduction, and combustion reactors, respectively. The designed system can achieve the total energy efficiency of ~50%. The result also suggests that N2-rich gas and pure H2 produced during SCL can be used directly for NH3 synthesis without any additional energy penalty. The additional step for CO2 separation can also be avoided, affording a cleaner and more efficient system that provides complete carbon capture. 相似文献
11.
Soo Youn Lee Hyun Jeong Lee Jae-Min Park Jin Hyung Lee Jin-Soo Park Hwa Sung Shin Yang-Hoon Kim Jiho Min 《International Journal of Hydrogen Energy》2010
In this study, recombinant plasmid was constructed to analyze the effect of hydrogen production on the expression HupSL hydrogenase isolated from Rhodobacter sphaeroides in Escherichia coli. Although most of recombinant HupSL hydrogenase was produced as inclusion bodies the solubility of the protein increased significantly when the expression temperature shifted from 37 °C to 30 °C. Hydrogen production by expression of HupSL hydrogenase from recombinant E. coli increased 20.9-fold compared to control E. coli and 218-fold compared to wild type R. sphaeroides under anaerobic dark condition. The results demonstrate that HupSL hydrogenase, consisting of small and large subunits of hydrogenase isolated from R. sphaeroides, increases hydrogen production in recombinant E. coli. In addition conditions for enhancing the activity of HupSL hydrogenase in E. coli were suggested and were used to increase bacterial hydrogen production. 相似文献
12.
In this study, biofuels (hydrogen and ethanol) fermentation from glucose and xylose by extreme thermophiles in an Up-flow Anaerobic Sludge Bed (UASB) reactor was successfully demonstrated. Autoclaved methanogenic granules were used as carriers for the extreme thermophiles. High yields of hydrogen and ethanol were achieved at various HRTs from 24 h to 6 h. The highest hydrogen production rate of 121 ± 23 mL/(L h) and highest ethanol production rate of 6.7 ± 1.2 mmol/(L h) were observed at HRT = 12 h. The highest simultaneous hydrogen and ethanol yields were 0.58 ± 0.11 mol H2/(mol hexose) and 0.72 ± 0.13 mol ethanol/(mol hexose), reaching a total energy yield of 1151 kJ/mol hexose. The substrate conversion efficiency was maintained over 90% at three HRTs (24, 18, and 12 h). 相似文献
13.
Albert Casanovas Maider Saint-GeronsFabien Griffon Jordi Llorca 《International Journal of Hydrogen Energy》2008
A two-side platelet microreactor was designed, modeled, and tested for the generation of hydrogen from ethanol under autothermal regime. The microchannels of one side of the platelet microreactor were coated with Co/ZnO catalyst for conducting the ethanol steam reforming reaction for producing hydrogen at low temperature, whereas the microchannels of the other side of the platelet were coated with CuMnOx catalyst for the complete oxidation of ethanol. The heat released during ethanol combustion was used for maintaining the heat demand for the endothermic steam reforming side of the microreactor. Several preparation methods were used and compared for the deposition of catalysts in the microchannels in order to guarantee homogeneous deposition and stability. An amount of 3.67 mol of hydrogen per mol of total ethanol consumed in both sides of the microreactor was obtained at 733 K. The overall efficiency of the microreactor was 71%. 相似文献
14.
The present study investigated the production of hydrogen (H2) and ethanol from glucose in an Anaerobic Continuous Stirred Tank Reactor (ACSTR). Effects of hydraulic retention time (HRT) and pH on the preference of producing H2 and/or ethanol and other soluble metabolic products in an open anaerobic enriched culture were studied. Production rates of H2 and ethanol increased with the increase of biomass concentration. Open anaerobic fermentation was directed and managed through on-line pH control for the production of H2 or ethanol. Hydrogen was produced by ethanol and acetate-butyrate type fermentations. pH has strong effect on the H2 or ethanol production by changing fermentation pathways. ACSTR produced mainly ethanol at over pH 5.5 whereas highest H2 production was obtained at pH 5.0. pH 4.9 favored the lactate production and accumulation of lactate inhibited the biomass concentration in the reactor and the production of H2 and ethanol. The microbial community structure quickly responded to pH changes and the Clostridia dominated in ACSTR during the study. H2 production was maintained mainly by Clostridium butyricum whereas in the presence of Bacillus coagulans glucose oxidation was directed to lactate production. 相似文献
15.
In this work, perovskite-type oxides La1−xCaxFe0.7Ni0.3O3 were prepared by using a citrate complex method. The catalysts were employed in the reactions of steam reforming of ethanol (SRE) and oxidative steam reforming of ethanol (OSRE) to produce hydrogen. A reduction-oxidation cycle was proposed to overcome the problems of active component sintering and carbon deposition encountered in SRE reaction. In the ex-situ reactions, highly dispersed surface nickel particles formed during the reduction of La1−xCaxFe0.7Ni0.3O3, while during the introduction of an oxidative atmosphere these particles could be oxidized and restored back into the perovskite bulk. Owing to the existence of this segregation-incorporation cycle of nickel species in the perovskite oxides, the sintering of nickel particles under OSRE was found depressed effectively. Besides, this work proved that the oxygen in the feed is helpful to the elimination of deposited carbon. It seems promising for overcoming the problems of the active component sintering and carbon deposition in SRE reaction by regulating the redox ability of the perovskite-type oxides and the feed composition. 相似文献
16.
17.
《International Journal of Hydrogen Energy》2019,44(20):9823-9829
As fossil energy resources are shrinking, the increase in global energy needs and environmental pollution paved the way to the search for new and renewable energy resources. Therefore, the future of energy technology is being built on the use of hydrogen, which is one of the cleanest and most efficient renewable energy sources, and steam reforming is becoming the utmost method to produce hydrogen. This study focuses on the operation condition of steam reforming of ethanol on catalyst materials, which were shaped using active metals such as Ni, Cu and Cs and supporting materials which were activated by carbon and LiAlO2. These catalyst materials were tested to produce hydrogen gas using different water/ethanol mole ratio at different temperatures and a constant feed flow rate. The evaluation regarding hydrogen selectivity results and the percentage of hydrogen in the products revealed that NiCuCs/LiAlO2 catalyst showed the highest performance at all water/ethanol ratios and temperatures between 300 and 600 °C. 相似文献
18.
Escherichia coli produces molecular hydrogen (H2) during glucose or mixed carbon (glucose and glycerol) fermentation. Dependence of H2 production rate (VH2) on glucose at different pHs was studied in a concentration dependent manner. During growth of wild-type on glucose, increasing glucose concentration from 0.05% to 0.2% resulted in the marked inhibition of VH2. Inhibitory effect of glucose was shown at pH 7.5 and 6.5 but not pH 5.5. However, glycerol added in the growth medium with 0.1% glucose significantly increased VH2 but different effects at different pHs were established upon glucose or glycerol assays. The results indicate that H2 production is inhibited by glucose in a concentration dependent manner during glucose fermentation but glucose in combination with glycerol might enhance H2 production during mixed carbon fermentation. 相似文献
19.
Paula Rúbia Ferreira Rosa Samantha Christine Santos Edson Luiz Silva 《International Journal of Hydrogen Energy》2014
The fermentation of glucose, cheese whey and the mixture of glucose and cheese whey were evaluated in this study from two inocula sources (sludge from a UASB reactor for swine wastewater treatment and poultry slaughterhouse) for hydrogen production in continuous anaerobic fluidized bed reactors (AFBR). For all fermentations, a hydraulic retention time (HRT) of 6 h and a substrate concentration of 5 g COD L−1 were used. In glucose fermentation, the maximum hydrogen yield (HY) was 1.37 mmol H2 g−1 COD. The co-fermentation of the cheese whey and glucose mixture was favorable for the concomitant production of hydrogen and ethanol, with yields of up to 1.7 mmol H2 g−1 COD and 3.45 mol EtOH g−1 COD in AFBR2. The utilization of cheese whey as a sole substrate resulted in an HY of 1.9 mmol H2 g−1 COD. Throughout the study, ethanol fermentation was evident. 相似文献