首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A designed asymmetric hybrid electrochemical capacitor was presented where NiO and Ru0.35V0.65O2 as the positive and negative electrode, respectively, both stored charge through reversible faradic pseudocapacitive reactions of the anions (OH) with electroactive materials. And the two electrodes had been individually tested in 1 M KOH aqueous electrolyte to define the adequate balance of the active materials in the hybrid system as well as the working voltage of the capacitor based on them. The electrochemical tests demonstrated that the maximum specific capacitance and energy density of the asymmetric hybrid electrochemical capacitor were 102.6 F g−1 and 41.2 Wh kg−1, respectively, delivered at a current density of 7.5 A cm−2. And the specific energy density decreased to 23.0 Wh kg−1 when the specific power density increased up to 1416.7 W kg−1. The hybrid electrochemical capacitor also exhibited a good electrochemical stability with 83.5% of the initial capacitance over consecutive 1500 cycle numbers.  相似文献   

2.
In this work, we reported an asymmetric supercapacitor in which active carbon (AC) was used as a positive electrode and carbon-coated LiTi2(PO4)3 as a negative electrode in 1 M Li2SO4 aqueous electrolyte. The LiTi2(PO4)3/AC hybrid supercapacitor showed a sloping voltage profile from 0.3 to 1.5 V, at an average voltage near 0.9 V, and delivered a capacity of 30 mAh g−1 and an energy density of 27 Wh kg−1 based on the total weight of the active electrode materials. It exhibited a desirable profile and maintained over 85% of its initial energy density after 1000 cycles. The hybrid supercapacitor also exhibited an excellent rate capability, even at a power density of 1000 W kg−1, it had a specific energy 15 Wh kg−1 compared with 24 Wh kg−1 at the power density about 200 W kg−1.  相似文献   

3.
Studies of the electrochemical behavior of K0.27MnO2·0.6H2O in K2SO4 show the reversible intercalation/deintercalation of K+-ions in the lattice. An asymmetric supercapacitor activated carbon (AC)/0.5 mol l−1 K2SO4/K0.27MnO2·0.6H2O was assembled and tested successfully. It shows an energy density of 25.3 Wh kg−1 at a power density of 140 W kg−1; at the same time it keeps a very good rate behavior with an energy density of 17.6 Wh kg−1 at a power density of 2 kW kg−1 based on the total mass of the active electrode materials, which is higher than that of AC/0.5 mol l−1 Li2SO4/LiMn2O4. In addition, this asymmetric supercapacitor shows excellent cycling behavior without the need to remove oxygen from the electrolyte solution. This can be ascribed in part to the stability of the lamellar structure of K0.27MnO2·0.6H2O. This asymmetric aqueous capacitor has great promise for practical applications due to high energy density at high power density.  相似文献   

4.
The nano-sized columned β-FeOOH was prepared by the hydrolysis process and its electrochemical capacitance performance was evaluated for the first time in Li2SO4 solution. A hybrid supercapacitor based on MnO2 positive electrode and FeOOH negative electrode in Li2SO4 electrolyte solution was designed. The electrochemical tests demonstrated that the hybrid supercapacitor has a energy density of 12 Wh kg−1 and a power density of 3700 W kg−1 based on the total weight of the electrode active materials with a voltage range 0–1.85 V. This hybrid supercapacitor also exhibits a good cycling performance and keeps 85% of initial capacity over 2000 cycles.  相似文献   

5.
Nanoscale carbon-coated Li2MnSiO4 powder is prepared using a conventional solid-state method and can be used as the negative electrode in a Li2MnSiO4/activated carbon (AC) hybrid supercapacitor. Carbon-coated Li2MnSiO4 material presents a well-developed orthorhombic crystal structure with a Pmn21 space group, although there is a small impurity of MnO. The maximum specific capacitance of the Li2MnSiO4/AC hybrid supercapacitor is 43.2 F g−1 at 1 mA cm−2 current density. The cell delivers a specific energy as high as 54 Wh kg−1 at a specific power of 150 W kg−1 and also exhibits an excellent cycle performance with more than 99% columbic efficiency and the maintenance of 85% of its initial capacitance after 1000 cycles.  相似文献   

6.
Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo2O4 spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo2O4 spinel thin film exhibited a high specific capacitance value of 580 F g−1 and an energy density of 32 Wh kg−1 at the power density of 4 kW kg−1, accompanying with good cyclic stability.  相似文献   

7.
Composite films of tungsten oxide (WO3) and polyaniline (PANI) have been electrodeposited by cyclic voltammetry in a mixed solution of aniline and precursor of tungsten oxide. Surface morphology and chemical composition of WO3/PANI composite are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The influence of H2O2 on the electrodeposition of WO3/PANI composite film is also investigated. Cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) results show that WO3/PANI composite film exhibit good pseudocapacitive performance over a wide potential range of −0.5 to 0.7 V vs. SCE with the specific capacitance of 168 F g−1 at current density of 1.28 mA cm−2 and energy density of 33.6 Wh kg−1, which is 91% higher than that of similarly prepared PANI (17.6 Wh kg−1). An asymmetric model capacitor using WO3/PANI as negative and PANI as positive electrodes over voltage range of 1.2 V displays a specific capacitance of 48.6 F g−1 and energy density of 9.72 Wh kg−1 at the power density of 53 W kg−1, which is two times higher than that of a symmetric capacitor modeled by using two PANI films as both positive and negative electrodes.  相似文献   

8.
A new cheap asymmetric supercapacitor based on activated carbon (AC) and NaMnO2 as electrodes and aqueous Na2SO4 solution as electrolyte was assembled. It shows an energy density of 19.5 Wh kg−1 at a power density of 130 W kg−1 based on the total mass of the active electrode materials and an excellent cycling behavior. This asymmetric aqueous AC//NaMnO2 capacitor is promising for practical applications due to its low price, easy preparation of NaMnO2 and friendliness to environment.  相似文献   

9.
Polyaniline–MWCNT nanocomposite has successfully been synthesized on the surface of chitosan wet-spun fibers by chemical oxidative polymerization. Morphological characterization of the nanocomposite fibers was performed by scanning electron microscopy (SEM). Electrochemical properties of the nanocomposite fibers as electrode material for electrical double layer capacitors (supercapacitors) in 0.5 M H2SO4 were studied by cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS) methods. The results showed that the nanocomposite fibers possess a specific capacitance of 14.48 F cm−2 and a specific energy of 0.0013 Wh cm−2 corresponding to a specific power of 0.011 W cm−2. Total capacitance of the nanocomposite fiber consists of pseudocapacitance produced by the polyaniline and electrical double-layer capacitance produced by fiber|electrolyte interface and chitosan.  相似文献   

10.
Metal oxide incorporated with a conductive polymer have shown great potential as high-performance energy storage devices. In this report, polyaniline wrapped silver decorated manganese dioxide (PANI/Ag@MnO2) nanorods were successfully synthesized and used as positive electrode material. Cyclic voltammetry, galvanostatic charge discharge and electrochemical impedance spectroscopy were employed to investigate the electrochemical activities. The overall result demonstrates that as prepared PANI/Ag@MnO2 nanorod performed better supercapacitor activities compared to Ag@MnO2 and pure MnO2. The PANI/Ag@MnO2 nanocomposite exhibited a high specific capacitance of 1028.66 F g?1 at a current density of 1 A g?1 (nearly close to the theoretical capacitance of MnO2). A detail investigation of the synergic effect of PANI, Ag and MnO2 on electrochemical properties is presented sequentially. The assembled (PANI/Ag@MnO2//AC) asymmetric supercapacitor device showed a high energy density of 49.77 W h kg?1 at power density of 1599.75 W kg?1. The facile and cost-effective production of PANI/Ag@MnO2 demonstrates a high specific capacitance and energy density with long life cycle introduces this material as a prospective candidate for energy management.  相似文献   

11.
Layered molybdenum disulfide (MoS2)–graphene composite is synthesized by a modified l-cysteine-assisted solution-phase method. The structural characterization of the composites by energy dispersive X-ray analysis, X-ray powder diffraction, Fourier transform infrared spectroscopy, XPS, Raman, and transmission electron microscope indicates that layered MoS2–graphene coalescing into three-dimensional sphere-like architecture. The electrochemical performances of the composites are evaluated by cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy. Electrochemical measurements reveal that the maximum specific capacitance of the MoS2–graphene electrodes reaches up to 243 F g−1 at a discharge current density 1 A g−1. The energy density is 73.5 Wh kg−1 at a power density of 19.8 kW kg−1. The MoS2–graphene composites electrode shows good long-term cyclic stability (only 7.7% decrease in specific capacitance after 1000 cycles at a current density of 1 A g−1). The enhancement in specific capacitance and cycling stability is believed to be due to the 3D MoS2–graphene interconnected conductive network which promotes not only efficient charge transport and facilitates the electrolyte diffusion, but also prevents effectively the volume expansion/contraction and aggregation of electroactive materials during charge–discharge process. Taken together, this work indicates MoS2–graphene composites are promising electrode material for high-performance supercapacitors.  相似文献   

12.
This is the first report about supercapacitive performance of hybrid film of manganese dioxide (MnO2) and polyaniline (PANI) in an organic electrolyte (1.0 M LiClO4 in acetonitrile). In this work, a high surface area and conductivity of active carbon (AC) electrode is used as a substrate for PANI/MnO2 film electro-codeposition. The redox properties of the coated PANI/MnO2 thin film exhibit ideal capacitive behaviour in 1 M LiClO4/AN. The specific capacitance (SC) of PANI/MnO2 hybrid film is as high as 1292 F g−1 and maintains about 82% of the initial capacitance after 1500 cycles at a current density of 4.0 mA cm−2, and the coulombic efficiency (η) is higher than 95%. An asymmetric capacitor has been developed with the PANI/MnO2/AC positive and pure AC negative electrodes, which is able to deliver a specific energy as high as 61 Wh kg−1 at a specific power of 172 W kg−1 in the range of 0-2.0 V. These results indicate that the organic electrolyte is a promising candidate for PANI/MnO2 material application in supercapacitors.  相似文献   

13.
A more practical, nontoxic and cheaper electrolyte, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) was used to construct supercapacitors with different nanocomposite electrodes. The flexible devices were fabricated including active carbon (AC) electrode and nanocomposites electrodes of AC/nano-silica (nano-SiO2) and AC/multiwalled carbon nanotubes (MWCNTs) at various weight percentages. The symmetrical cell made from AC electrodes generated a maximum specific capacitance (Cs) of 315 F g−1 at 0.5 A g−1. The energy density of this device was 55.5 Wh kg−1 at a power density of 690 W kg−1. Excellent performance was achieved after 5000 charge-discharge cycles where the supercapacitor maintains 92% of its activity. The energy storage capability of the supercapacitors was also investigated with the addition of nano-SiO2 and MWCNTs. The Cs of the supercapacitors made with the electrodes AC/nano-SiO2 (5%, 10%, 25% and 50%) were 172, 228, 247 and 55 F g−1, respectively. Similarly, the capacity of the device including the electrodes of AC/MWCNTs (5%, 10%, 25% and 50%) varied as 191, 244, 93 and 20 F g−1 at 0.5 A g−1. The maximum energy density of the devices having nano-SiO2 and MWCNT were 44.4 Wh kg−1 and 43.8 Wh kg−1, respectively at a power density of 520 W kg−1. A supercapacitor with certain dimension successfully operated a light-emitting diode (LED).  相似文献   

14.
Asymmetric aqueous electrochemical capacitors with energy densities as high as 22 Wh kg−1, power densities of 11 kW kg−1 and a cell voltage of 2 V were fabricated using cost effective, high surface carbon derived from coal tar pitch and manganese dioxide. The narrow pore size distribution of the activated carbon (mean pore size ∼0.8 nm) resulted in strong electroadsorption of protons making them suitable for use as negative electrodes. Amorphous manganese dioxide anodes were synthesized by chemical precipitation method with high specific capacitance (300 F g−1) in aqueous electrolytes containing bivalent cations. The fabricated capacitors demonstrated excellent cyclability with no signs of capacitance fading even after 1000 cycles.  相似文献   

15.
Nickel sulfide-based materials have shown great potential for electrode fabrication owing to their high theoretical specific capacitance but poor conductivity and morphological aggregation. A feasible strategy is to design hybrid structure by introducing highly-conductive porous carbon as the supporting matrix. Herein, we synthesized hybrid composites consisting of interconnected NiS-nanosheets and porous carbon (NiS@C) derived from Zeolitic-imidazolate frameworks (ZIFs) using a facile low-temperature water-bath method. When employed as electrode materials, the as-prepared NiS@C nanocomposites present remarkable electrochemical performance owing to the complex effect that is the combined advantages of double-layer capacitor-type porous carbon and pseudocapacitor-type interconnected-NiS nanosheets. Specifically, the NiS@C nanocomposites exhibit a high specific capacitance of 1827 F g−1 at 1 A g−1, and excellent cyclic stability with a capacity retention of 72% at a very high current density of 20 A g−1 after 5000 cycles. Moreover, the fabricated hybrid supercapacitor delivers 21.6 Wh kg−1 at 400 W kg−1 with coulombic efficiency of 93.9%, and reaches 10.8 Wh kg−1 at a high power density of 8000 W kg−1, along with excellent cyclic stability of 84% at 5 A g−1 after 5000 cycles. All results suggest that NiS@C nanocomposites are applicable to high-performance electrodes in hybrid supercapacitors and other energy-storage device applications.  相似文献   

16.
The graphene-manganese oxide hybrid material has been prepared by solution-phase assembly of aqueous dispersions of graphene nanosheets and manganese oxide nanosheets at room temperature. The morphology and structure of the obtained material are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction and N2 adsorption-desorption. Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. An asymmetric electrochemical capacitor with high energy and power densities based on the graphene-manganese oxide hybrid material as positive electrode and graphene as negative electrode in a neutral aqueous Na2SO4 solution as electrolyte is assembled. The asymmetrical electrochemical capacitor could cycle reversibly in a voltage of 0-1.7 V and give an energy density of 10.03 Wh kg−1 even at an average power density of 2.53 kW kg−1. Moreover, the asymmetrical electrochemical capacitor exhibit excellent cycle stability, and the capacitance retention of the asymmetrical electrochemical capacitor is 69% after repeating the galvanostatic charge-discharge test at the constant current density of 2230 mA g−1 for 10,000 cycles.  相似文献   

17.
Prussian blue analogue with a typical metal-organic framework has been widely used as an electrode material in supercapacitor. In this work, nickel cobalt hexacyanoferrate (Ni2CoHCF) was grown on nickel foam directly using a simple co-precipitation method. The as-prepared Ni2CoHCF was tested by transmission electron microscope, scanning electron microscope, X-ray diffraction and X-ray electron energy spectrum. The results showed that Ni2CoHCF has a unique open face-centered cubic structure. The Ni2CoHCF was used to set an asymmetric supercapacitor directly. A series of electrochemical tests showed that Ni2CoHCF had an excellent electrochemical performance. The specific capacitance of the supercapacitor was 585 C g−1 (1300.0 F g−1, 162.5 mAh g−1) at the current density of 0.5 A g−1. After 2000 cycles, it still maintained 85.57% of its initial specific capacitance at the current density of 10 A g−1. The energy density was 30.59 Wh kg−1 at the power density of 378.7 W kg−1. The results show that the supercapacitor constructed by Ni2CoHCF as an electrode material has high-current charge-discharge capacity, high energy density and long cycle life.  相似文献   

18.
Utilizing the dual functions of activated carbon (AC) both as a conductive agent and an active substance of a positive electrode, a hybrid supercapacitor (AC-MnO2&AC) with a composite of manganese dioxide (MnO2) and activated carbon as the positive electrode (MnO2&AC) and AC as the negative electrode is fabricated, which integrates approximate symmetric and asymmetric behaviors in the distinct parts of 2 V operating windows. MnO2 in the positive electrode and AC in the negative electrode together form a pure asymmetric structure, which extends the operating voltage to 2 V due to the compensatory effect of opposite over-potentials. In the range of 0-1.1 V, both AC in the positive and negative electrode assemble as a symmetric structure via a parallel connection which offers more capacitance and less internal resistance. The optimal mass proportions of electrodes are calculated though a mathematical process. In a stable operating window of 2 V, the capacitance of AC-MnO2&AC can reach 33.2 F g−1. After 2500 cycles, maximum energy density is 18.2 Wh kg−1 with a 4% loss compared to the initial cycle. The power density is 10.1 kW kg−1 with an 8% loss.  相似文献   

19.
It is very desirable to develop the high-performance supercapacitors to meet the rapidly growing demands for energy-autonomous operation and miniaturization of devices. Herein, comb-like porous NiCo2O4 nanoneedles on the three-dimension (3D) nickel foam (NF) have been successfully synthesized through a facile pulsed laser ablation (PLA) approach without any post-treatments and surfactant (denoted as NiCo2O4-PLA). The influence of working solution during the fabricated process on the properties of NiCo2O4-PLA has been demonstrated in detail in terms of the crystalline structure, specific surface area, morphology, and electrochemical performance. Benefiting from the large specific surface (261.4 m2 g−1), abundant pores, and highly conductive scaffold, the NiCo2O4-PLA binder-free electrode exhibits an outstanding specific capacitance (1650 F g−1 at a current density of 1 A g−1) and eminent cycling performance (91.78% retention after a 12,000-cycle test at a current density of 10 A g−1) compared with the control samples. The assembled asymmetric device (NiCo2O4-PLA//AC-ASCs) delivers the high specific capacitance of 126.9 F g−1 at the current density of 1 A g−1, the large energy density of 56.7 Wh kg−1 at a power density of 756 W kg−1, and the low internal resistance. The attractive results strongly prove that it is an ideal candidate for advanced supercapacitor application.  相似文献   

20.
In this work, NiCo2S4, nickel-cobalt layered double hydroxides (NiCo-LDH) and CoS2 electrodes are successfully prepared by using ZIF-67 as the precursor, the results show that NiCo-LDH and NiCo2S4 are nano-flower-like structures and CoS2 exhibits a nano-cage structure. The electrochemical properties of the hybrid supercapacitor assembled with NiCo2S4 and activated carbon (AC) as electrodes were tested. As the positive electrode of NiCo2S4//AC hybrid supercapacitor, the NiCo2S4 electrode has the largest specific capacity of 2934 mAh g?1 at a current density of 1 A g?1. The NiCo2S4//AC capacitor generates the highest energy density of 38.8 Wh kg?1 when the power density is 993.0 W kg?1 and has a nice cycling performance with a capacity retention rate of 81.2% after 10,000 cycles at 5 A g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号