首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In solid-state hydrogen storage in light metal hydrides, nanoconfinement and the use of catalysts represent promising solutions to overcoming limitations such as poor reversibility and slow kinetics. In this work, the morphology and hydrogen desorption kinetics of NaAlH4 melt-infiltrated into a previously developed Ti-based doped porous Al scaffold is analysed. Small-angle X-ray scattering and scanning electron microscopy analysis of low NaAlH4 loading in the porous Al scaffold has revealed that mesopores and small macropores are filled first, leaving the larger macropores/voids empty. Temperature-programmed desorption experiments have shown that NaAlH4-infiltrated porous Al scaffolds show a higher relative H2 release, with respect to NaAlH4 + TiCl3, in the temperature range 148–220 °C, with the temperature of H2 desorption trending to bulk NaAlH4 with increasing scaffold loading. The Ti-based catalytic effect is reproduced when the dopant is present in the scaffold. Further work is required to increase the mesoporous volume in order to enhance the nanoconfinement effect.  相似文献   

2.
Nanocrystalline titanium dioxide/carbon composite (TiO2/C) was synthesized through a direct solution-phase carburization using tetrabutyl titanate (Ti(OBu)4) and resol as precursors. The prepared TiO2/C composite was mainly in the anatase structure with an average particle size under 20 nm, which was then introduced in NaAlH4 as a catalyst through ball milling. The desorption curves show that both nanocrystalline TiO2/C and TiO2 can obviously improve the kinetics of NaAlH4, while NaAlH4 with 3 mol% TiO2/C exhibits better cycling stability than NaAlH4 with 3 mol%TiO2. The hydrogen storage capacity of NaAlH4 with TiO2/C remains stable after 5th cycle, and about 94% of initial hydrogen is released, while the capacity of NaAlH4 with TiO2 decreases continuously during cycling, and only 88% of initial hydrogen is released after 10th cycle. Furthermore, NaAlH4 with 3 mol%TiO2/C exhibits good reversibility at relatively low hydrogen pressures, and it can reload 4.16 and 1.63wt% hydrogen at 50 and 30 bar hydrogen pressures, respectively.  相似文献   

3.
In the present work, a strategy for simultaneously reducing the thermal stability of NaAlH4 and enhancing its dehydrogenation kinetics was suggested by means of synergistic effects from co-additives of mesoporous carbon material CMK-3 and NbF5. The ball milled NaAlH4 + 10 wt% (NbF5 + CMK-3) (NbF5: CMK-3 = 1:1 in weight ratio) composite can liberate hydrogen at an onset temperature of 358 K, which was drastically decreased by 93 K from that of pristine NaAlH4. By means of Kissinger's method, the activation energy of NaAlH4 + 10 wt% (NbF5 + CMK-3) can be identified as 99.2 kJ mol?1, which was greatly reduced from that of pristine NaAlH4 (121 kJ mol?1). Investigations on the dehydrogenation process revealed that CMK-3 was beneficial to reducing the particle size of NaAlH4 during ball milling, while NbF5 was actively involved in the decomposition of NaAlH4 and yielded some Nb-relevant intermediate phases NbH0.89 during the heating process. The modified dehydrogenation pathway of NaAlH4 also results in the destabilization of dehydrogenation by 2.13 kJ mol?1 H2 from that of pristine NaAlH4. During the hydrogenation process, the NbH0.89 and the mesoporous carbon material CMK-3 played synergistic roles in improving the dehydrogenation performance of NaAlH4.  相似文献   

4.
For hydrogen to be successfully used as an energy carrier in a new renewable energy driven economy, more efficient hydrogen storage technologies have to be found. Solid-state hydrogen storage in complex metal hydrides, such as sodium alanate (NaAlH4), is a well-researched candidate for this application. A series of NaAlH4/mesoporous carbon black composites, with high NaAlH4 content (50–90 wt%), prepared via ball milling have demonstrated significantly lower dehydrogenation temperatures with intense dehydrogenation starting at ∼373 K compared to bulk alanate's ≥ 456 K. Dehydrogenation/hydrogenation cycling experiments have demonstrated partial hydrogenation at 6 MPa H2 and 423 K. The cycling experiments combined with temperature-programmed dehydrogenation and powder X-ray diffraction have given insight into the fundamental processes driving the H2 release and uptake in the NaAlH4/carbon composites. It is established that most of the hydrogenation behavior can be attributed to the Na3AlH6 ↔ NaH transition.  相似文献   

5.
The effect of NbF5 on the hydrogen sorption performance of NaAlH4 has been investigated. It was found that the dehydrogenation/hydrogenation properties of NaAlH4 were significantly enhanced by mechanically milling with 3 mol% NbF5. Differential scanning calorimetry results indicate that the ball-milled NaAlH4-0.03NbF5 sample lowered the completion temperature for the first two steps dehydrogenation by 71 °C compared to the pristine NaAlH4 sample. Isothermal hydrogen sorption measurements also revealed a significant enhancement in terms of the sorption rate and capacity, in particular, at reduced operation temperatures. The apparent activation energy for the first-step and the second-step dehydrogenation of the NaAlH4-0.03NbF5 sample is estimated to be 88.2 kJ/mol and 102.9 kJ/mol, respectively, by using Kissinger’s approach, which is much lower than for pristine NaAlH4, indicating the reduced kinetic barrier. The rehydrogenation kinetics of NaAlH4 was also improved with 3 mol% NbF5 doping, absorbing ∼1.7 wt% hydrogen at 150 °C for 2 h under ∼5.5 MPa hydrogen pressure. In contrast, no hydrogen was absorbed by the pristine NaAlH4 sample under the same conditions. The formation of Na3AlH6 was detected by X-ray diffraction on the rehydrogenated NaAlH4-0.03NbF5 sample. Furthermore, the structural changes in the NbF5-doped NaAlH4 sample after ball milling and the hydrogen sorption were carefully examined, and the active species and mechanism of catalysis in NbF5-doped NaAlH4 are discussed.  相似文献   

6.
The present paper reports the catalytic effect of carbon nanomaterials, particularly carbon nanotubes (CNTs) and graphitic nanofibres (GNFs) with two different structure morphology, namely planar GNFs (PGNFs) and helical GNFs (HGNFs) as the catalyst for improving the dehydrogenation and rehydrogenation behavior of sodium aluminum hydride (NaAlH4). It has been observed that HGNFs posses superior catalytic activity than other carbon nanoforms in improving the desorption kinetics and decreasing the desorption temperature of NaAlH4. Temperature programmed desorption (TPD) reveals that HGNFs admixed NaAlH4 undergo hydrogen desorption at a much lower temperature than PGNFs and CNTs (SWCNTs and MWCNTs) admixed NaAlH4. Thus for the heating rate of 2 °C/min, the peak desorption temperature corresponds to initial step decomposition of NaAlH4 admixed with 2 wt.% HGNFs and 2 wt.% PGNFs has been lowered to 143.6 °C and 152.6 °C, respectively (for pristine NaAlH4, it is ∼170 °C). In addition to the enhancement in desorption kinetics, the HGNFs admixed NaAlH4 undergoes fast rehydrogenation at the moderate condition. Microstructural investigation reveals that the HGNFs were present on the surface of NaAlH4 grains, whereas CNTs were tunneled into the grains of NaAlH4 suggesting a distinct catalytic behavior of different carbon nanovariants.  相似文献   

7.
Nanocrystalline titanium dioxide loaded carbon spheres (Ti-CSs) with 10wt% TiO2 were synthesized through an easy one-step method using phenolic resols, titania nanoparticles and Pluronic F127 as organic carbon sources, inorganic precursors and surfactant, respectively. The results show that the as-prepared Ti-CSs composite is spherical shape with a diameter ranging from 0.3 to 2 μm, and rutile TiO2 nanoparticles are distributed on the surface of the carbon spheres. Then the kinetics of NaAlH4 was improved through depositing it on the surface of as-prepared Ti-CSs by melt infiltration. The results show that NaAlH4 with Ti-CSs exhibits better hydrogen desorption kinetics than TiF3 or nanocrystalline TiO2 catalysted-NaAlH4, and it starts to release hydrogen at about 40 °C and releases about 25% of the hydrogen content during heating to 60 °C. The results from SEM and XPS show that hydrogen storage properties of NaAlH4 were considerably improved due to the formation of special structure during melt infiltration and the nanocrystalline TiO2 and/or amorphous phase Ti–Al clusters near the subsurface sites, which succeed in combining catalyst addition (TiO2 nanoparticles) and nanoconfinement to improve the kinetics of NaAlH4.  相似文献   

8.
This study investigated the effect of Nd2O3 and Gd2O3 as catalyst on hydrogen desorption behavior of NaAlH4. Pressure-content-temperature (PCT) equipment measurement proved that both two oxides enhanced the dehydrogenation kinetics distinctly and increasing Nd2O3 and Gd2O3 from 0.5 mol% to 5 mol% caused a similar effect trend that the dehydrogenation amount and average dehydrogenation rate increased firstly and then decreased under the same conditions. 1 mol% Gd2O3–NaAlH4 presented the largest hydrogen desorption amount of 5.94 wt% while 1 mol% Nd2O3–NaAlH4 exerted the fastest dehydrogenation rate. Scanning Electron microscopy (SEM) analysis revealed that Gd2O3–NaAlH4 samples displayed uniform surface morphology that was bulky, uneven and flocculent. The difference of Nd2O3–NaAlH4 was that with the increasing of Nd2O3 content, the particles turned more and more big. Compared to dehydrogenation behavior, this phenomenon demonstrated that small particles structure were beneficial to hydrogen desorption. Besides, the further study found that different catalysts and addition amounts had different effects on the microstructure of NaAlH4.  相似文献   

9.
The main objective of this work was to investigate the different effects of transition metals (TiO2, VCl3, HfCl4) on the hydrogen desorption/absorption of NaAlH4. The HfCl4 doped NaAlH4 showed the lowest temperature of the first desorption at 85 °C, while the one doped with VCl3 or TiO2 desorbed at 135 °C and 155 °C, respectively. Interestingly, the temperature of desorption in subsequent cycles of the NaAlH4 doped with TiO2 reduced to 140 °C. On the contrary, in the case of NaAlH4 doped with HfCl4 or VCl3, the temperature of desorption increased to 150 °C and 175 °C, respectively. This may be because Ti can disperse in NaAlH4 better than Hf and V; therefore, this affected segregation of the sample after the desorption. The maximum hydrogen absorption capacity can be restored up to 3.5 wt% by doping with TiO2, while the amount of restored hydrogen was lower for HfCl4 and VCl3 doped samples. XRD analysis demonstrated that no Ti-compound was observed for the TiO2 doped samples. In contrast, there was evidence of Al–V alloy in the VCl3 doped sample and Al–Hf alloy in the HfCl4 doped sample after subsequent desorption/absorption. As a result, the V- or Hf-doped NaAlH4 showed the lower ability to reabsorb hydrogen and required higher temperature in the subsequent desorptions.  相似文献   

10.
The present investigation describes the hydrogen storage properties of 2:1 molar ratio of MgH2–NaAlH4 composite. De/rehydrogenation study reveals that MgH2–NaAlH4 composite offers beneficial hydrogen storage characteristics as compared to pristine NaAlH4 and MgH2. To investigate the effect of carbon nanostructures (CNS) on the de/rehydrogenation behavior of MgH2–NaAlH4 composite, we have employed 2 wt.% CNS namely, single wall carbon nanotubes (SWCNT) and graphene nano sheets (GNS). It is found that the hydrogen storage behavior of composite gets improved by the addition of 2 wt.% CNS. In particular, catalytic effect of GNS + SWCNT improves the hydrogen storage behavior and cyclability of the composite. De/rehydrogenation experiments performed up to six cycles show loss of 1.50 wt.% and 0.84 wt.% hydrogen capacity in MgH2–NaAlH4 catalyzed with 2 wt.% SWCNT and 2 wt.% GNS respectively. On the other hand, the loss of hydrogen capacity after six rehydrogenation cycles in GNS + SWCNT (1.5 + 0.5) wt.% catalyzed MgH2–NaAlH4 is diminished to 0.45 wt.%.  相似文献   

11.
The co-effects of lanthanide oxide Tm2O3 and porous silica on the hydrogen storage properties of sodium alanate are investigated. NaAlH4-Tm2O3 (10 wt%) and NaAlH4-Tm2O3 (10 wt%)-porous SiO2 (10 wt%) are prepared by the ball milling method, and their hydrogen desorption/re-absorption capacities are compared. Dehydrogenation process was performed at 150 °C under vacuum and rehydrogenation was performed at 150 °C for 4 h under ∼9 MPa in highly pure hydrogen. The results show that Tm2O3 has a catalytic effect on the hydrogen desorption and re-absorption of NaAlH4. The hydrogen desorption capacity of Tm2O3 single-doped NaAlH4 is 4.6 wt%, higher than that of undoped NaAlH4 (4.3 wt%). During the dehydrogenation process, NaAlH4 is completely decomposed and no intermediate product Na3AlH6 is detected. The addition of porous silica improves the dehydrogenation performance of NaAlH4. Tm2O3 and porous silica co-doped NaAlH4 could release a maximum hydrogen amount of 4.7 wt%, higher than that of undoped NaAlH4 and Tm2O3 single-doped NaAlH4. Moreover, porous silica improves the reversibility of hydrogen storage in NaAlH4.  相似文献   

12.
In this paper we performed a comprehensive investigation of the structural and sorption properties of a 40 wt. % NaAlH4 confined in a ordered mesoporous carbon (OMC, i.e. CMK-3) by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), 23Na{1H} and 27Al{1H} solid-state magic angle spinning-nuclear magnetic resonance (MAS-NMR).  相似文献   

13.
A potential negative electrode material (mesoporous nano-Co3O4) is synthesized via a simple thermal decomposition of precursor Co(OH)2 hexagonal nanosheets in the air. The structure and morphology of the samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is found that the nano-Co3O4 is present in mesoporous hexagonal nanoparticles. The average size of holes is about 5-15 nm. The electrochemical performances of mesoporous nano-Co3O4 as the active starting negative electrode material for alkaline secondary battery are investigated by galvanostatic charge-discharge and cyclic voltammetry (CV) technique. The results demonstrate that the prepared mesoporous nano-Co3O4 electrode displays excellent electrochemical performance. The discharge capacity of the mesoporous nano-Co3O4 electrode can reach 436.5 mAh g−1 and retain about 351.5 mAh g−1 after 100 cycles at discharge current of 100 mA g−1. A properly electrochemical reaction mechanism of mesoporous nano-Co3O4 electrode is also constructed in detail.  相似文献   

14.
NaAlH4 has been homogeneously mixed with micron- and nano-sized TiO2 powders by high-energy ball milling and their sorption properties have been investigated during hydrogen absorption/desorption cycles. NaAlH4 with TiO2 nanopowder exhibits as good desorption kinetics as NaAlH4 with TiCl3, whereas poor desorption kinetics is observed with micron-sized TiO2 powder. NaAlH4 with TiO2 nanopowder also provides improved cyclic property compared to NaAlH4 with TiCl3 in terms of both desorption rate and hydrogen capacity. X-ray diffraction analysis shows that micron-sized TiO2 remains stable with NaAlH4 after milling, although thermodynamic calculation predicts that TiO2 reacts with NaAlH4.  相似文献   

15.
The influence on the decomposition and reforming of the hydrogen storage material NaAlH4 by adding relatively low amounts of mesoporous carbon black is investigated with in situ diffraction. A 60:40 NaAlH4/carbon black composite is prepared via ball milling and characterised ex situ via X-ray diffraction, gas adsorption, temperature-programmed decomposition, and dehydrogenation/hydrogenation cycling methods. The prepared composite is deuterated, and the crystalline phase composition is determined with in situ neutron powder diffraction method during multiple decomposition/deuteration cycles. Changes in the crystalline phase composition start slightly below the melting temperature of the pristine alanate, whereas the release of deuterium starts at considerably lower temperatures. The decomposition of Na3AlD6 to NaD is almost completely reversible at the applied low deuterium pressures of ≥2 MPa. Thus, the strong effect of even low concentrations of a mesoporous carbon black on the capability to store H2 reversibly is showcased and analysed in-depth.  相似文献   

16.
By directly introducing LaCl3, La3Al11, SmCl3, SmAl3 into NaAlH4 system using one-step synthesis method, the effects of these additives on NaAlH4 were systematically investigated with regard to hydriding and dehydriding properties. Results showed that the materials doped with aluminide exhibit similar kinetics to the chloride-doped NaAlH4. The apparent activation energy Ea of doped NaAlH4 were calculated to be 86.4-93.0 kJ/mol and 96.1-99.3 kJ/mol for the first and second dehydrogenation step respectively by using Kissinger’s approach, much lower than those of pristine NaAlH4. A reversible hydrogen capacity of 4.8 wt% can be achieved for the La3Al11- and SmAl3-doped NaAlH4, which is 10-20% higher than chloride-doped NaAlH4. Investigations on the phase evolvement and microstructure in the cycling in LaCl3- and La3Al11-doped NaAlH4 clearly demonstrate that La species is presented as the form of La-Al nanoclusters in the materials. The combination of hydrogen storage properties and the microstructures unequivocally reveal that the in situ formed rare-earth-Al species play a crucial rule in catalyzing the chloride-doped NaAlH4.  相似文献   

17.
In a previous paper, it was demonstrated that a MgH2–NaAlH4 composite system had improved dehydrogenation performance compared with as-milled pure NaAlH4 and pure MgH2 alone. The purpose of the present study was to investigate the hydrogen storage properties of the MgH2–NaAlH4 composite in the presence of TiF3. 10 wt.% TiF3 was added to the MgH2–NaAlH4 mixture, and its catalytic effects were investigated. The reaction mechanism and the hydrogen storage properties were studied by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry (DSC), temperature-programmed-desorption and isothermal sorption measurements. The DSC results show that MgH2–NaAlH4 composite milled with 10 wt.% TiF3 had lower dehydrogenation temperatures, by 100, 73, 30, and 25 °C, respectively, for each step in the four-step dehydrogenation process compared to the neat MgH2–NaAlH4 composite. Kinetic desorption results show that the MgH2–NaAlH4–TiF3 composite released about 2.4 wt.% hydrogen within 10 min at 300 °C, while the neat MgH2–NaAlH4 sample only released less than 1.0 wt.% hydrogen under the same conditions. From the Kissinger plot, the apparent activation energy, EA, for the decomposition of MgH2, NaMgH3, and NaH in the MgH2–NaAlH4–TiF3 composite was reduced to 71, 104, and 124 kJ/mol, respectively, compared with 148, 142, and 138 kJ/mol in the neat MgH2–NaAlH4 composite. The high catalytic activity of TiF3 is associated with in situ formation of a microcrystalline intermetallic Ti–Al phase from TiF3 and NaAlH4 during ball milling or the dehydrogenation process. Once formed, the Ti–Al phase acts as a real catalyst in the MgH2–NaAlH4–TiF3 composite system.  相似文献   

18.
The effect of multi-walled carbon nanotubes (MWCNTs) addition on the dehydrogenation behavior of NaAlH4 (sodium alanate) is investigated using high-pressure thermal gravimetric analysis (HPTGA) and in-situ synchrotron X-ray diffraction (in-situ synchrotron XRD) technique. The HPTGA results show that the addition of MWCNTs facilitates dehydrogenation of NaAlH4 by lowering the first-step dehydrogenation temperature to 80 °C. In-situ synchrotron XRD analysis demonstrates that the dehydrogenation pathway can be modified by the addition of MWCNTs which resulting in an enhanced hydrogen desorption rate and reduced desorption temperature.  相似文献   

19.
TiF3-doped NaH/Al mixture was hydrogenated into Na3AlH6 and NaAlH4 complex hydrides by reactive ball-milling at room temperature through the optimization of milling duration and hydrogen pressure. The analysis of the preparation of NaAlH4 samples during reactive ball-milling process has been performed by XRD and TG/DSC. It has been found that Na3AlH6 was formed under 0.5 MPa hydrogen pressure and 30 h milling duration, while NaAlH4 was formed under 0.8 MPa hydrogen pressure and 45 h milling duration. The process of preparing NaAlH4 by ball-milling was found accomplished via two reaction steps, namely: (1) NaH + Al + H2 → Na3AlH6 and (2) Na3AlH6 + Al + H2 → NaAlH4. As the hydrogen pressure and milling duration increase, the synthetic yield of NaAlH4 and its corresponding dehydriding capacity are both increased. With increased hydrogen pressure (0.8-3 MPa) and milling duration (45-60 h), the cell volume of Na3AlH6 decreases while that of NaAlH4 increases gradually. The abundance of Na3AlH6 phase decreases from 57.76 (x = 0.8, y = 45) to 8.69 wt.% (x = 3, y = 60), and the abundance of NaAlH4 phase increases from 20.63 (x = 0.8, y = 45) to 86.50 wt.% (x = 3, y = 60). All the samples prepared in this way have fairly good activation behavior and fast hydriding/dehydriding reaction kinetics, which are capable of absorbing 4.26 wt.% hydrogen at 120 °C and desorbing 4.12 wt.% hydrogen at 150 °C, respectively. The improvement of hydriding/dehydriding properties is ascribed to the favorable microstructure and ultrafine particle features of nanosized NaAlH4 formed during ball-milling at the optimum synthetic condition.  相似文献   

20.
The crystal structures, electronic and dehydrogenation properties of TiB2 cluster-doped NaAlH4 (101) surface have been investigated by the first-principles density functional theory method. In the TiB2 cluster-doped NaAlH4 (101) surface, a Ti-centered TiB2–Al2H8–AlH5–AlH3 complex is observed, and the AlH3 and (AlH5)2− units in the TiB2–Al2H8–AlH5–AlH3 favor the first-step decomposition reaction of NaAlH4. The calculated electronic properties show that B–Ti bonds are stronger than B–Al and Ti–H bonds, which demonstrates that TiB2 does not change its configuration in catalyzing the decomposition reaction of NaAlH4. The results of hydrogen desorption energies imply that the import of TiB2 makes the strength of Al–H bonds decreases. Therefore, the removal of H atoms, especially the removal of H atoms in the Ti–H–Al bonds is easier in the TiB2 cluster-doped NaAlH4 than in pure NaAlH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号