首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a promising renewable energy storage device, the solid oxide electrolysis cell (SOEC) attracts wide attention in the world. In this study, the effect of operating pressure on the co-electrolysis of water and carbon dioxide in SOEC is investigated by a three-dimensional model, in which the reversible water gas shift reaction and direct internal reforming reaction are considered. After comparison with experimental data, the influence of operating pressure on the polarization loss, electrolysis reaction rate, chemical reaction rate and thermal-neutral voltage is also studied in detail. The results show that the cell voltage increases below 8 atm and then decreases with the operating pressure. In addition, the effects of thermal insulation boundary condition, gas flow configuration and gas utilization rate under different operating pressures are also discussed. It is found that the reverse direct internal reforming reaction is activated under the operating pressure higher than 3 atm. Moreover, compared to co-flow arrangement, counter-flow arrangement is more helpful to cell performance improvement at high current densities.  相似文献   

2.
Hydrogen production via steam electrolysis may involve less electrical energy consumption than conventional low temperature water electrolysis, reflecting the favourable thermodynamics and kinetics at elevated temperatures. In the present paper, a one-dimensional model of a cathode-supported planar intermediate temperature solid oxide electrolysis cell (SOEC) stack is employed to study the dynamic behaviour of such an electrolyser. The simulations found that step changes in the average current density cause the stack temperature to alter during both exothermic and endothermic operation. However, the temperature control, by the variation of the air flow through the stack, was predicted to be capable of returning the stack temperature to the initial value. Furthermore, the proposed control strategy is observed to reduce the interim temperature excursions between the initial and final steady states, suggesting that such a control strategy has a good potential to prevent the issues of cell component fracture, and transitions in stack operating mode, which are related to the temperature fluctuations during dynamic operation of an SOEC stack.  相似文献   

3.
Hydrogen production via steam electrolysis may involve less electrical energy consumption than conventional low temperature water electrolysis, reflecting the improved thermodynamics and kinetics at elevated temperatures. The present paper reports on the development of a one-dimensional dynamic model of a cathode-supported planar intermediate temperature solid oxide electrolysis cell (SOEC) stack. The model, which consists of an electrochemical model, a mass balance, and four energy balances, is here employed to study the steady state behaviour of an SOEC stack at different current densities and temperatures. The simulations found that activation overpotentials provide the largest contributions to irreversible losses while concentration overpotentials remained negligible throughout the stack. For an average current density of 7000 A m−2 and an inlet steam temperature of 1023 K, the predicted electrical energy consumption of the stack is around 3 kW h per normal m3 of hydrogen, significantly smaller than those of low temperature stacks commercially available today. However, the dependence of the stack temperature distribution on the average current density calls for strict temperature control, especially during dynamic operation.  相似文献   

4.
A thermodynamic Aspen Plus simulation model for a reversible solid oxide fuel cell (RSOFC) is presented and evaluated. It is composed of an electrolysis and a fuel cell module. The latter is based on an existing non reversible SOFC model. The electrolysis model simulates water electrolysis as well as catalytic reactions of inlet gases. The model has been validated using data from literature. It has been found that the support layer on fuel electrode supported cells has to be treated differently in terms of diffusion than the active layer. Simulation results show that for the investigated cell parameters, the positive effect of adding CO2 to the steam feed on the electrolysis process is due to water–gas-shift reactions and not CO2 electrolysis. An analysis of outlet gas compositions in electrolysis mode showed that the assumption of the cell as an equilibrium reactor was justified. A parameter study has been conducted, showing that increasing the operation temperature and pressure can improve the overall performance, while changing the inlet gas compositions in general improves either fuel cell or electrolysis mode and deteriorates performance for the other mode.  相似文献   

5.
High temperature steam electrolysis using solid oxide electrolysis cell (SOEC) technology can provide hydrogen as fuel for transport or as base chemical for chemical or pharmaceutical industry. SOECs offer a great potential for high efficiencies due to low overpotentials and the possibility for waste heat use for water evaporation. For many industrial applications hydrogen has to be pressurized before being used or stored. Pressurized operation of SOECs can provide benefits on both cell and system level, due to enhanced electrode kinetics and downstream process requirements. Experimental results of water electrolysis in a pressurized SOEC stack consisting of 10 electrolyte supported cells are presented in this paper. The pressure ranges from 1.4 to 8 bar. Steady-state and dynamically recorded U(i)-curves as well as electrochemical impedance spectroscopy (EIS) were carried out to evaluate the performance of the stack under pressurized conditions. Furthermore a long-term test over 1000 h at 1.4 bar was performed to evaluate the degradation in exothermic steam electrolysis mode. It was observed that the open circuit voltage increases with higher pressure due to well-known thermodynamic relations. No increase of the limiting current density was observed with elevated pressure for the ESC-stacks (electrolyte supported cell) that were investigated in this study. The overall and the activation impedance were found to decrease slightly with higher pressure. Within the impedance studies, the ohmic resistance was found to be the most dominant part of the entire cell resistance of the studied electrolyte supported cells of the stack. A constant current degradation test over 1000 h at 1.4 bar with a second stack showed a voltage degradation rate of 0.56%/kh.  相似文献   

6.
Hydrogen production via steam electrolysis may involve less electrical energy consumption than conventional low temperature water electrolysis, reflecting the favourable thermodynamics and kinetics at elevated temperatures. The present paper reports on the development of a one-dimensional dynamic model of a cathode-supported planar intermediate temperature solid oxide electrolysis cell (SOEC) stack with air flow introduced through the cells. The model, which consists of an electrochemical model, two mass balances, and four energy balances, is here employed to study the prospect of the stack temperature control through the variation of the air flow rate. The simulations found that the increase in the air flow rate provides enhanced cooling and heating during exothermic and endothermic operations, respectively. The stack behaviour has suggested that such a convective heat transfer between the cell components and air flow would allow the control of stack temperature. However, only a small dependence of the temperature on the air flow rate was observed for a stack driven at conditions near thermoneutral operation, indicating that this operating mode should be avoided from a control perspective.  相似文献   

7.
An alternative power-to-methanol process based on an integration of a tubular proton-conducting solid oxide electrolysis cell into a methanol synthesis unit is explained, energetically evaluated and technically presented. Being currently developed in the joint research project DELTA, the novel process has the potential for a significant increase in system efficiency, if the heat from the exothermic synthesis reaction can be utilized and/or kinetic advantages can be achieved.For the experimental proof of the concept and a comprehensive characterization of the process, a test platform is currently under construction. The design of the flexible test facility with the complex technical integration of both processes (electrolysis and synthesis) is described briefly. The chemical reactor, where electrolysis and synthesis are taking place, allows for an operation at temperatures (for electrolysis) up to 700 °C, pressures of 10 MPa and a current (across the electrolysis cell) of up to 100 A. Moreover, a precise pressure balancing system between both gas volumes, an axial temperature measurement and the possibility of regulating both processes inside the pressure vessel are pivotal properties of the test facility.  相似文献   

8.
The steam electrolysis performance of an intermediate-temperature solid oxide electrolysis cell (SOEC) was measured at 650 °C at various steam concentrations. The cell voltage decreased with increasing steam concentration, which was attributed to a decrease in the steam electrode polarization. The highest performance of the SOEC was 1.32 V at 0.57 A cm−2. On the basis of the electrolytic characteristics of this cell, the efficiency of a hydrogen production system operating at a capacity of 300 N m3 h−1 was estimated. The system efficiency reached a higher heating value (HHV standard) of 98% due to the effective recovery of thermal energy from exhaust gas.  相似文献   

9.
A utilized regenerative solid oxide fuel cell (URSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the URSOFC acts like a solid oxide electrolyzer cell (SOEC) in water electrolysis mode; whereby the electric energy is stored as (electrolyzied) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the URSOFC also acts as a solid oxide fuel cell (SOFC) in power generation mode to produce electricity when needed. The URSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its anode support cell using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the URSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization. In addition, there were great improvements in performance for both the SOFC and SOEC modes after the first test and could be attributed to an increase in porosity within the oxygen electrode, which was beneficial for the oxygen reaction.  相似文献   

10.
Classical solid oxide fuel cell anode (Ni-cermet) could be employed as solid oxide electrolysis cell cathode. Ni-cermet has been synthesized and tested as solid oxide electrolyzer cathode using three-electrode techniques between 700 °C and 900 °C. yttria stabilized zirconia was used as the electrolyte and Pt as the counter electrode. Polarization curves and impedance spectra have been analyzed for two gas compositions. The presented results demonstrated an influence of Ni-cermet electrode behavior upon gas composition and temperature. The present results highlight a mechanism changing on Ni-cermet electrode upon gas composition. In a second part, a one-dimensional steady state model is developed to predict the cathodic behavior of Ni-cermet. This model takes into account mass and charge conservation, transport of species and reaction kinetics. It considers the porous electrode to be a homogeneous medium characterized. The influence of varying chemical and electrochemical steps kinetic on the shape of polarization curves is discussed. At high overpotential values the model with two rate-limiting steps has been validated using numerical optimization method.  相似文献   

11.
High temperature solid oxide electrolysis cells (SOEC) provide an innovative solution for direct conversion of steam and electricity to hydrogen with the additional capability of adding CO2 to produce syngas. However, specific operating conditions can have a negative impact on the performance and lifetime of SOECs. In this context, the distributions of operational parameters such as gas species, temperature and current density within the cell structure influence local transport processes and reaction kinetics and can lead to locally different electrochemical potentials and thus degradation phenomena. This study focuses on experimental investigations of steam-electrode supported SOECs with segmented air electrodes with the main objective to measure EIS and thus identify locally-resolved impedance and degradation characteristics caused by different operating conditions in steam and co-electrolysis mode. Thereby, significant correlations between operating conditions, local effects, electrode processes and degradation mechanisms were observed and analyzed in detail using EIS, DRT and SEM.  相似文献   

12.
A high activity ferrite Pr0.3Sr0.7Ti0.3Fe0.7O3?δ (PSTF) has been synthesized and examined as a cathode of solid oxide electrolysis cell (SOEC) for direct high-temperature steam electrolysis. The SOEC with a configuration of PSTF|YSZ|LSM-YSZ was operated under H2O concentrations ranging from 20%H2O/Ar to 60%H2O/Ar and exhibited excellent electrochemical performances. Polarization resistance of the electrolyzer was as small as 0.43 Ω cm2 in 60%H2O/Ar at 1.85 V at 800 °C. According to AC impendence spectra analyzing, gas diffusion process was the rate-determine-step (RDS) under smaller current density, while under larger current density, transport properties in the electrodes and the interfaces of electrode/electrolyte was RDS. The electrochemical properties of PSTF cathodes were systematically investigated and compared when they were exposed to gas atmosphere with and without safe gas (H2). The obtained results demonstrated that PSTF electrode could conceivably avoid any hydrogen feeding for steam electrolysis.  相似文献   

13.
Degradation of a solid oxide electrolysis cell (SOEC) during long-term operation remains to be the key obstacle to their massive production and commercialization. One of degradation processes within SOEC is anode delamination. The anode of SOEC splits at the interface with solid electrolyte due to elevated pressure of oxygen that is produced by electrochemical reactions. The main assumption that anode delamination starts at the fuel inlet is based on post-mortem analysis of SOEC. This paper addresses numerical modelling of a single, electrolyte supported, SOEC. The anode delamination is modelled by implementing the modifications of SOEC's geometry. A brief overview of the model is also given. Verification of the implemented model relies on the measurement data from literature. The simulation results show that increasing the area of delaminated anode (Adelaminated) increases the operating voltage of the SOEC if a constant electrolysis current is applied. This strongly influences the conversion efficiency (η) of the SOEC. Indeed, if linear growth of Adelaminated over time is assumed, the η of SOEC degrades very fast at the beginning of SOEC's operation. The presented model also helps analyze the hot spots of current density, where high pressure of oxygen appears.  相似文献   

14.
Vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices (solid oxide fuel cells and solid oxide electrolysis cells) with metallic interconnects. Some metallic coatings (Ni, Co, and Cu) may significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials widely used for interconnects, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coatings. We found that Cr migration in Ni coatings is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through the Ni coating layer on the ferritic 441 steel substrate and available experimental data.  相似文献   

15.
Symmetrical solid oxide cells (s-SOC) present several advantages compared to typical configuration, as a reduction of sintering steps or a better thermomechanical compatibility between the electrodes and the electrolyte. Different mixed ionic-electronic conductors (MIEC) have been reported as suitable candidates for symmetrical configuration, allowing operations under steam electrolysis (SOEC) or co-electrolysis (co-SOEC) without the use of reducing safe gas (typically employed in SoA nickel based cells). In the present study, Sr2Fe1.5Mo0.5O6−δ (SFM) electrodes are deposited on both sides of YbScSZ tapes previously coated with a Ce1-xGdxO1.9 (GDC) barrier layer grown by PLD. Electrode sintering temperature is optimized and fixed at 1200 °C by means of electrochemical impedance spectroscopy (EIS) measurements in symmetrical atmosphere. The cell is then characterized at 900 °C in SOEC and co-SOEC modes without the use of any safe gas obtaining high current densities of 1.4 and 1.1 A cm−2 at 1.3 V respectively. Short-term reversibility is finally proven by switching the gas atmosphere between the cathode and anode sides while keeping the electrolysis conditions. Similar performances are obtained in both configurations.  相似文献   

16.
Reversible solid oxide cells (r-SOCs) can be operated in either solid oxide fuel cell or solid oxide electrolysis cell mode. They are expected to become important in the support of renewable energy due to their high efficiency for both power generation and hydrogen generation. The exchange current density is one of the most important parameters in the quantification of electrode performance in solid oxide cells. In this study, four different fuel electrodes and two different air electrodes are fabricated using different materials and the microstructures are compared. The temperature, fuel humidification, and oxygen concentration at the air electrode are varied to obtain the apparent exchange current density for the different electrode materials. In contrast to ruthenium-and-gadolinia-doped ceria (Rh-GDC) as well as nickel-and-gadolinia-doped ceria (Ni-GDC) electrodes, significant differences in the apparent exchange current density were observed between electrolysis and fuel cell modes for the nickel-scandia-stabilized zirconia (Ni-ScSZ) cermet. Variation of gas concentration revealed that surface adsorption sites were almost completely vacant for all these electrodes. The apparent exchange current densities obtained in this study are useful as a parameter for simulation of the internal properties of r-SOCs.  相似文献   

17.
High-temperature steam electrolysis by solid oxide electrolysis cells (SOEC) is a method with great potential for transforming clean and renewable energy from non-fossil sources to synthetic fuels such as hydrogen, methane or dimethyl ether, which have been identified as promising alternative energy carriers. With the same technology, fuel gas can be used in a very efficient way to reconvert chemically stored energy into electrical energy, since SOECs also work in the reverse mode, operating as solid oxide fuel cells (SOFC). As solid oxide cells (SOC) perform at high-temperatures (700–900 °C), material degradation and evaporation can occur, e.g., from the cell-sealing material, leading to poisoning effects and aging mechanisms that decrease the cell efficiency and long-term durability. To investigate such cell degradation processes, thorough examination of SOCs often requires a chemical and structural characterisation at a microscopic and nanoscopic level. The combination of different microscopic techniques such as conventional scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and the focused ion beam (FIB) preparation technique for transmission electron microscopy (TEM) allows for post-mortem analysis at a multi-scale level. These complementary techniques can be used to characterise structural and chemical changes over a large and representative sample area (micro-scale) as well as at the nano-scale level for selected sample details. This article presents a methodical approach for the structural and chemical characterisation of changes in aged cathode-supported electrolysis cells produced at Risø DTU, Denmark. Additionally, we present results from the characterisation of impurities at the electrolyte/hydrogen interface caused by evaporation of sealing material.  相似文献   

18.
Degradation of solid oxide electrolysis cells (SOECs) is probably the biggest concern in the field of high temperature steam electrolysis (HTSE). Anode supported, YSZ-based microtubular solid oxide fuel cells (SOFC) have been tested in fuel cell mode and also at high voltages (up to 2.8 V) under electrolysis mode. At high steam conversion rates the cell voltage tends to saturate. Our hypothesis is that this effect is caused by the electroreduction of the thin YSZ electrolyte which induces electronic conduction losses. YSZ reduction increases the cathode activity and reduces cathode overpotential. Operation of the cell in severe electrolyte reduction conditions induces irreversible damage at the YSZ electrolyte as observed in SEM experiments by the formation of voids at the grain boundaries of the dense YSZ electrolyte. Evidence of this damage was also given by the increase of the ohmic resistance measured by AC impedance. Signs of electrolyte degradation were also found by both EDX analysis and micro-Raman spectroscopy performed along a transverse-cross section of the cell. The observed oxygen electrode delamination is associated to the high oxygen partial pressures gradients that take place at the electrolyte/oxygen electrode interface.  相似文献   

19.
The durabilities of a single solid oxide electrolysis cell (SOEC) and a solid oxide fuel cell (SOFC) operating at 0.3 A cm?2 and 973 K under different air supply conditions were investigated. In the SOEC, S penetration was observed mainly at the gadolinium-doped ceria (CGO) electrolyte/lanthanum strontium cobalt oxide (LSC) oxygen electrode interface. In contrast, during SOFC operation, S was distributed widely within the LSC. The reaction governing S penetration into the LSC is an oxidizing one. Thus, it is likely that the high oxygen partial pressure at the CGO electrolyte/LSC oxygen electrode interface accelerated the penetration of S. When air was supplied using an activated carbon filter during SOEC operation, the degradation rate decreased to 0.6% kh?1 within 3000 h. Finally, the results of accelerated tests performed using air containing 0.2 ppm SO2 suggested that the effect of S poisoning was greater during SOEC operation than during SOFC operation.  相似文献   

20.
A promising strontium and cobalt-free ferrite Pr1-xCaxFeO3-δ (PCF, x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) has been synthesized successfully by glycine-nitrate combustion method and used as the air electrode of solid oxide electrolysis cell (SOEC) for steam electrolysis. The crystal structure and electricity conductivity of PCF are investigated in detail. According to the conductivity test, Pr0.6Ca0.4FeO3-δ (PCF64) with higher conductivity is selected as the air electrode to preparing the single cell with structure of PCF64|GDC|SSZ|YSZ-NiO. Under SOFC mode, the maximum power density of the single cell is 462.93 mW cm−2 at 800 °C with hydrogen as fuel. Under SOEC mode, the current density reaches 277.14 mA cm−2 and the corresponding hydrogen production rates is 115.84 mL cm−2 h−1 at 800 °C at 1.3 V. In the 10 h short-term stability test, the cell shows good electrolysis stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号