首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mesophilic high hydrogen producing strain DMHC-10 was isolated from a lab scale anaerobic reactor being operated on distillery wastewater for hydrogen production. DMHC-10 was identified as Clostridium sp. on the basis of 16S rRNA gene sequencing. Various medium components (carbon and nitrogen sources) and environmental factors (initial pH, temperature of incubation) were optimized for hydrogen production by Clostridium sp. DMHC-10. The strain, in late exponential growth phase, showed maximum hydrogen production (3.35 mol-H2 mol−1 glucose utilized) at 37 °C, pH 5.0 in a medium supplemented with organic nitrogen source. Butyric acid to acetic acid ratio was ca. 2.3. Hydrogen production declined when organic nitrogen was replaced with inorganic nitrogen.  相似文献   

2.
Macroalgae are rich in carbohydrates which can be used as a promising substrate for fermentative biohydrogen production. In this study, Cladophora sp. biomass was fermented for biohydrogen production at various inoculum/substrate (I/S) ratios against a control of inoculum without substrate in laboratory-scale batch reactors. The biohydrogen production yield ranged from 40.8 to 54.7 ml H2/g-VS, with the I/S ratio ranging from 0.0625 to 4. The results indicated that low I/S ratios caused the overloaded accumulation of metabolic products and a significant pH decrease, which negatively affected hydrogen production bacteria's metabolic activity, thus leading to the decrease of hydrogen fermentation efficiency. The overall results demonstrated that Cladophora sp. biomass is an efficient fermentation feedstock for biohydrogen production.  相似文献   

3.
Biohydrogen production by dark fermentation in batch reactors was modeled using the Gompertz equation and a model based on Anaerobic Digestion Model (ADM1). The ADM1 framework, which has been well accepted for modeling methane production by anaerobic digestion, was modified in this study for modeling hydrogen production. Experimental hydrogen production data from eight reactor configurations varying in pressure conditions, temperature, type and concentration of substrate, inocula source, and stirring conditions were used to evaluate the predictive abilities of the two modeling approaches. Although the quality of fit between the measured and fitted hydrogen evolution by the Gompertz equation was high in all the eight reactor configurations with r2 ∼0.98, each configuration required a different set of model parameters, negating its utility as a general approach to predict hydrogen evolution. On the other hand, the ADM1-based model (ADM1BM) with predefined parameters was able to predict COD, cumulative hydrogen production, as well as volatile fatty acids production, albeit at a slightly lower quality of fit. Agreement between the experimental temporal hydrogen evolution data and the ADM1BM predictions was statistically significant with r2 > 0.91 and p-value <1E-04. Sensitivity analysis of the validated model revealed that hydrogen production was sensitive to only six parameters in the ADM1BM.  相似文献   

4.
Biological mycelia pellets, which are formed spontaneously in the process of Aspergillus niger Y3 fermentation, were explored as carrier for immobilization of Clostridium sp. T2 to improve hydrogen production. Batch fermentation tests showed that optimal dosage and size of mycelia pellets for hydrogen production were 0.350 g 150 ml−1 medium and 1.5 mm. Under these conditions, hydrogen production with immobilized cells on mycelia pellets was further investigated in continuous stirred-tank reactor (CSTR) with hydraulic retention time (HRT) ranging from 12 to 8 h. It obtained that the maximum hydrogen production rate reached 2.76 mmol H2 L−1 h−1 at 10 h HRT, which was 40.8% higher than the carrier-free process, but slightly lower than the counterpart immobilized in sodium alginate with the value of 3.15 mmol H2 L−1 h−1. SEM observation showed that abundant cells were closely adhered to mycelia pellets. The present results indicate the potential of using mycelia pellets as biological carrier for enhancing hydrogen production.  相似文献   

5.
In this study, hydrogen gas was produced from starch feedstock via combination of enzymatic hydrolysis of starch and dark hydrogen fermentation. Starch hydrolysis was conducted using batch culture of Caldimonas taiwanensis On1 able to hydrolyze starch completely under the optimal condition of 55 °C and pH 7.5, giving a yield of 0.46–0.53 g reducing sugar/g starch. Five H2-producing pure strains and a mixed culture were used for hydrogen production from raw and hydrolyzed starch. All the cultures could produce H2 from hydrolyzed starch, whereas only two pure strains (i.e., Clostridium butyricum CGS2 and CGS5) and the mixed culture were able to ferment raw starch. Nevertheless, all the cultures displayed higher hydrogen production efficiencies while using the starch hydrolysate, leading to a maximum specific H2 production rate of 116 and 118 ml/g VSS/h, for Cl. butyricumCGS2 and Cl. pasteurianum CH5, respectively. Meanwhile, the H2 yield obtained from strain CGS2 and strain CH5 was 1.23 and 1.28 mol H2/mol glucose, respectively. The best starch-fermenting strain Cl. butyricum CGS2 was further used for continuous H2 production using hydrolyzed starch as the carbon source under different hydraulic retention time (HRT). When the HRT was gradually shortened from 12 to 2 h, the specific H2 production rate increased from 250 to 534 ml/g  VSS/h, whereas the H2 yield decreased from 2.03 to 1.50  mol H2/mol glucose. While operating at 2 h HRT, the volumetric H2 production rate reached a high level of 1.5 l/h/l.  相似文献   

6.
Waste generation, waste management, sustainable energy production, and global warming are interrelated environmental issues to be considered together. Wastewater treatment sludge is an organic substance rich waste which causes significant environmental problems. However, these wastes can be used as raw material in biofuel generation. This study was designed to investigate the possible utilization of waste sludge in biohydrogen production by taking these facts into consideration. For this purpose, the sludge was first pre-treated with acid and then, the solid (sludge) and liquid (filtrate) phases of acid pre-treated sludge were used as the substrates for biohydrogen generation dark fermentation. Two-factor factorial experimental design method was used in acid hydrolysis of sludge to determine the effect of pH (pH = 2–6) and reaction period (time, min) elution of chemical oxygen demand (COD), total organic carbon (TOC) and total sugar (TS), NH4N and PO4P. Statistical evaluation of the results indicated that pH significantly affects the elution of organic carbon and nutrient content of sludge while the reaction time is significant for only organic carbon content. The optimum pretreatment conditions for maximum organic and nutrient elution were determined as pH = 2 and t = 1440 min. The pretreated products, named as filtrate sludge and sludge, conducted to dark fermentation under mesophilic conditions for biohydrogen generation showed that pretreatment of waste sludge at pH = 6 is the best condition giving the maximum yields (YH2) as YH2 = 24 mmol g−1 Total Sugar consumed and YH2 = 41 mmol g−1 Total sugar consumed, for filtrate and sludge, respectively.  相似文献   

7.
Biohydrogen is usually produced via dark fermentation, which generates CO2 emissions and produces soluble metabolites (e.g., volatile fatty acids) with high chemical oxygen demand (COD) as the by-products, which require further treatments. In this study, mixotrophic culture of an isolated microalga (Chlorella vulgaris ESP6) was utilized to simultaneously consume CO2 and COD by-products from dark fermentation, converting them to valuable microalgae biomass. Light intensity and food to microorganism (F/M) ratio were adjusted to 150 μmol m−2 s−1 and F/M ratio, 4.5, respectively, to improve the efficiency of assimilating the soluble metabolites. The mixotrophic microalgae culture could reduce the CO2 content of dark fermentation effluent from 34% to 5% with nearly 100% consumption of soluble metabolites (mainly butyrate and acetate) in 9 days. The obtained microalgal biomass was hydrolyzed with 1.5% HCl and subsequently used as the substrate for bioH2 production with Clostridium butyricum CGS5, giving a cumulative H2 production of 1276 ml/L, a H2 production rate of 240 ml/L/h, and a H2 yield of 0.94 mol/mol sugar.  相似文献   

8.
The hydrogen-producing strain PROH2 pertaining to the genus Clostridium was successfully isolated from a shallow submarine hydrothermal chimney (Prony Bay, New Caledonia) driven by serpentinization processes. Cell biomass and hydrogen production performances during fermentation by strain PROH2 were studied in a series of batch experiments under various conditions of pH, temperature, NaCl and glucose concentrations. The highest hydrogen yield, 2.71 mol H2/mol glucose, was observed at initial pH 9.5, 37 °C, and glucose concentration 2 g/L, and was comparable to that reported for neutrophilic clostridial species. Hydrogen production by strain PROH2 reached the maximum production rate (0.55 mM-H2/h) at the late exponential phase. Yeast extract was required for growth of strain PROH2 and improved significantly its hydrogen production performances. The isolate could utilize various energy sources including cellobiose, galactose, glucose, maltose, sucrose and trehalose to produce hydrogen. The pattern of end-products of metabolism was also affected by the type of energy sources and culture conditions used. These results indicate that Clostridium sp. strain PROH2 is a good candidate for producing hydrogen under alkaline and mesothermic conditions.  相似文献   

9.
Hydrogen is an energy source that can be produced by Clostridium sporogenes microorganism. In the present work, modeling of dark fermentation using Clostridium beijerinckii and dextrose as substrate was performed to evaluate how the gases and liquid by-products affect the biological process. A mathematical model was developed according to ADM1. The developed model takes into account biochemical reactions, physicochemical equilibrium as well as mass transfer processes during dark fermentation. Findings revealed that Clostridium beijerinckii reached a yield as high as 3.58 mol of H2/mol of dextrose and generates by-products in the aqueous phase that may either be used as raw materials in a chemical process. Clostridium beijerinckii is very sensitive to acid media (pH < 5.0) and shows a low rate of biohydrogen production (even the absence of metabolic activity) at pH lower than 4.5. The developed model is able to predict (R2 > 0.95) dextrose consumption profile, cumulative biohydrogen production and the maximum concentrations of liquid by-products.  相似文献   

10.
Fermentation is an important innovation by mankind and this process is used for converting organic substrate into useful products. Using natural conditions, specifically, light and dark conditions, photo-fermentation and dark fermentation techniques can be developed and operated under controlled conditions. Generally, products such as biofuels, bioactive compounds and enzymes have been produced using the dark fermentation method. However, the major requirement for today's industralized world is biofuels in its clean and pure forms. Biohydrogen is the most efficient and cleanest form of energy produced using dark fermentation of organic substrates. Nevertheless, the quantity of biohydrogen produced via dark fermentation is low. In order to increase the product quantity and quality, several internal and external stress or alterations are made to conventional fermentation conditions. In recent times, nanotechnology has been introduced to enhance the rate of dark fermentation. Nanoparticles (NPs), specifically, inorganic NPs such as silver, iron, titanium oxide and nickel have increased the production rate of biohydrogen. Therefore, the present review focuses on exploring the potential of nanotechnology in the dark fermentation of biohydrogen production, the mechanisms involved, substrates used and changes to be made to increase the production efficiency of dark fermentation.  相似文献   

11.
Hydrogen production by dark fermentation (DF) from wastewater, food waste, and agro-industrial waste combines the advantages to be renewable, sustainable and environmentally friendly. But this attractive process involves a three-phase gas-liquid-solid system highly sensitive to mixing conditions. However, mixing is usually disregarded in the conventional strategies for enhancing biohydrogen productivity, even though H2 production can be doubled, e.g. versus of reactor design (0.6–1.5 mol H2/mol hexose). The objective of this review paper is, therefore, to highlight the key effects of mixing on biohydrogen production among the abiotic parameters of DF. First, the pros and cons of the different modes of mixing in anaerobic digesters are described. Then, the influence of mixing on DF is discussed using recent data from the literature and theoretical analysis, focusing on the multiphase and multiscale aspects of DF. The methods and tools available to quantify experimentally the role of mixing both at the local and global scales are summarized. The 0-D to 3-D strategies able to implement mixing in fermentation modeling and scale-up procedures are examined. Finally, the perspectives in terms of process intensification and scale-up tools using mixing optimization are discussed with the issues that are still to be solved.  相似文献   

12.
Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 °C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0–2.3 mol H2/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans.  相似文献   

13.
Cellobiose fermentation in batch test using an isolated strain, Clostridium sp. R1, was investigated. The Clostridium sp. R1 achieved a maximum hydrogen yield of 3.5 mol H2 mol−1 cellobiose at pH 6 and 30 °C, higher than most yields reported in literature. This strain can generate hydrogen from a number of carbohydrates, including galactose, glucose, mannose, maltose, sucrose, and starch. This strain can also convert cellobiose to hydrogen in the presence of toxic phenol or cresol. The inhibition effects of phenolic compounds on strain R1 activity followed phenol > p-cresol > o-cresol > m-cresol. Co-culturing with another strain, Clostridium butyricum, can co-degrade some of the phenol as substrates. The new isolated strain can yield hydrogen from phenol-containing wastewaters.  相似文献   

14.
An anaerobic continuous-flow hydrogen fermentor was operated at a hydraulic retention time of 8 h using condensed molasses fermentation solubles (CMS) substrate of 40 g-COD/L. Serum bottles were used for seed micro-flora cultivation and batch hydrogen fermentation tests (CMS substrate concentrations of 10–160 g-COD/L). Three hydrogen-producing bacterial strains Clostridium sporosphaeroides F52, Clostridium tyrobutyricum F4 and Clostridium pasteurianum F40 were isolated from the seed fermentor and used as the seeding microbes in single and mixed-culture cultivations for determining their hydrogen productivity. These strains possessed specific hydrogenase genes that could be detected from CMS-fed hydrogen fermentors and were major hydrogen producers. C. pasteurianum F40 was the dominant strain with a high hydrogen production rate while C. sporosphaeroides F52 may play a main role in degrading carbohydrate and glutamate. These strains could be co-cultivated as a symbiotic mixed-culture process to enhance hydrogen productivity. C. pasteurianum F40 or C. tyrobutyricum F4 co-culture with the glutamate-utilizing strain C. sporosphaeroides F52 efficiently enhanced hydrogen production by 12–220% depending on the substrate CMS concentrations.  相似文献   

15.
Lignocellulosic biomass contains approximately 70-80% carbohydrates. If properly hydrolyzed, these carbohydrates can serve as an ideal feedstock for fermentative hydrogen production. In this research, batch tests of biohydrogen production from acid-pretreated wheat straw were conducted to analyze the effects of various associated bioprocesses. The objective of the pretreatment phase was to investigate the effects of various sulfuric acid pretreatments on the conversion of wheat straw to biohydrogen. When sulfuric acid-pretreated solids at a concentration of 2% (w/v) were placed in an oven for 90 min at 120 °C, they degraded substantially to fermentative gas. Therefore, wheat straw that is pre-treated under the evaluated conditions is suitable for hydrolysis and fermentation in a batch test apparatus. Five different conditions were evaluated in the tests, which were conducted in accordance with standard batch test procedures (DIN 38414 S8): fresh straw, pre-treated straw, supernatants derived from acid hydrolyzation, Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF). The SSF method proved to be the most effective and economical way to convert wheat straw to biohydrogen. The hydrogen yield by this method was 1 mol H2/mol glucose, which resulted from 5% carbon degradation (ηC, gas) or the equivalent of 64% of the hydrogen volume that was produced in the reference test (glucose equivalent test). This method also proved to have the shortest lag phase for gas production. The supernatants derived from acid hydrolysis were very promising substances for continuous tests and presented excellent characteristics for the mass production of biohydrogen. For example, a 1.19 mol H2/mol glucose (76% glucose equivalent) yield was achieved along with a 52% carbon degradation.  相似文献   

16.
Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H2 g−1 starch and a specific hydrogen production rate of 32.1 ml H2 g−1 h−1.  相似文献   

17.
Fermentative hydrogen production was carried out using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). This work investigates the effects of initial substrate concentration, initial medium pH, and temperature. The hydrogen yield was about 3.1 mol (mol glucose)−1 when starting with an initial glucose concentration of 10 gl−1 and initial a pH of 6.0 ± 0.2 at a temperature of 37 °C. The volume of hydrogen produced decreased when higher initial glucose concentrations were applied. The most suitable conditions for hydrogen production in a batch reactor were observed at initial pH 6.0 ± 0.2 and 37 °C.  相似文献   

18.
Biohydrogen production via dark fermentation has shown immense potential for simultaneous energy generation and waste remediation. However, the low substrate conversion rates limit its practical feasibility. Therefore, the present work attempts to develop a single chamber microbial electrolysis cell (MEC) as an additional means for biohydrogen production. Different organic substrates including simple sugars and volatile fatty acids were demonstrated as potential substrates for H2 production in MEC. The use of water hyacinth as sole substrate for H2 production was examined. Furthermore, the feasibility of using MEC for second stage energy recovery after dark fermentation was explored. The two-stage process exhibited improved performance as compared to single stage MEC process with overall hydrogen yield of 67.69 L H2/kg CODconsumed, COD removal of 70.33% and energy recovery of 46%. These results suggest that coupled dark fermentation-MEC process can be a promising means for obtaining high yield biohydrogen from water hyacinth.  相似文献   

19.
Biohydrogen is a fossil-fuel alternative. Lignocellulosic biomass is a complex part of cellulose-to-simple sugar production. Napier grass, one of the lignocellulosic biomasses, is best for biofuels or biochemicals. The dark fermentation process of Napier grass for biohydrogen proved both cost-effective and environmentally friendly. This grass contains cellulose, hemicellulose and lignin were 35.44 ± 2.01, 20.05 ± 1.55, and 28.473 ± 1.34, respectively. Sodium hydroxide was used in different concentrations to delignify lignocellulose and improve grass glucose recovery. Fermentative hydrogen production from grass biomass processing by microflora was optimized in terms of pH (4.5–7.0) and mesophilic condition (35 ± 2 °C). In this study, mesophilic conditions favored maximum hydrogen production (763.34 ml), indicating that pH 5.5 was suitable for dark-fermentative hydrogen production; study results showed Napier grass could be used successfully for dark fermentation to produce biohydrogen.  相似文献   

20.
Biohydrogen production from biomass waste, not only addresses the energy demand in a renewable manner but also resolves the safe disposal issues associated with these biowastes. Also, scalable and low-cost techniques to enhance biohydrogen production have gained more attraction and are highly explored. In this research work, date-palm fruit wastes have been studied for their biohydrogen production potential using Enterobacter aerogenes by dark fermentation. Hydrogen yield and productivity were improved through the addition of iron oxide nanoparticles (Fe3O4 NPs) and its date seed activated carbon nanocomposites (Fe3O4/DSAC) to the fermentation media. Studies on discrete inclusions of these NPs showed that the appropriate dosage of NPs promoted, while higher dosages repressed the hydrogen production performance. Optimal dosage and fermentation time was observed as 150 mg/L and 24 h for both the additives. Fe3O4/DSAC nanocomposites showed better hydrogen production enhancement than Fe3O4 NPs. Maximum hydrogen yield of 238.7 mL/g was obtained for the 150 mg/L nanocomposites, which was 65.7% higher than that of the standalone Fe3O4 NPs and three folds higher than the yield of the control run without any NPs inclusion (78.4 mL/g). Metabolites analysis showed that the hydrogen evolution followed the ethanol-acetate pathway. Formation levels of longer chain propionate and butyrate co-metabolites were significantly low in the presence of Fe3O4/DSAC than Fe3O4. The carbon support in the nanocomposites acted as an adsorbent-buffer, which favored the medium pH in-addition to the stimulatory effects of Fe3O4 NPs. Cell growth and specific hydrogenase activity analysis were also performed to supplement the hydrogen production results. Gompertz and modified Logistic kinetic models were employed for kinetic modeling of experimental hydrogen production values. The Fe3O4/DSAC nanocomposites exhibited significant application potential for the production of biohydrogen from date fruit wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号