首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive life cycle assessment (LCA) is reported for five methods of hydrogen production, namely steam reforming of natural gas, coal gasification, water electrolysis via wind and solar electrolysis, and thermochemical water splitting with a Cu–Cl cycle. Carbon dioxide equivalent emissions and energy equivalents of each method are quantified and compared. A case study is presented for a hydrogen fueling station in Toronto, Canada, and nearby hydrogen resources close to the fueling station. In terms of carbon dioxide equivalent emissions, thermochemical water splitting with the Cu–Cl cycle is found to be advantageous over the other methods, followed by wind and solar electrolysis. In terms of hydrogen production capacities, natural gas steam reforming, coal gasification and thermochemical water splitting with the Cu–Cl cycle methods are found to be advantageous over the renewable energy methods.  相似文献   

2.
Hydrogen production from water splitting is considered one of the most environmentally friendly processes for replacing fossil fuels. Among the various technologies to produce hydrogen from water splitting, thermochemical cycles using chemical reagents have the advantage of scale up compared to other specific facilities or geological conditions required. According to thermochemical processes using chemical redox reactions, 2-, 3-, 4-step thermochemical water splitting cycles can generate hydrogen more efficiently due to reducing temperatures. Increasing the number of cycles or steps of thermochemical hydrogen production could reduce the required maximum temperature of the facility. In addition, recently developed hybrid thermochemical processes combined with electricity or solar energy have been studied on a large scale because of the reduced cost of hydrogen production. Additionally, hybrid thermochemical water splitting combined with renewable energy can result in not only reducing the cost, but also increasing hydrogen production efficiency in terms of energy. As for a green energy, hydrogen production from water splitting using sustainable and renewable energy is significant to protect biological environment and human health. Additionally, hybrid thermochemical water splitting is conducive to large scale hydrogen production. This paper reviews the multi-step and highly developed hybrid thermochemical technologies to produce hydrogen from water splitting based on recently published literature to understand current research achievements.  相似文献   

3.
In this paper, seven common hydrogen production processes are evaluated using the Analytic Hierarchy Process (AHP) in respect to five criteria. The processes to be evaluated are steam methane reforming (SMR), partial oxidation of hydrocarbons (POX), coal gasification (CG), biomass gasification (BG), the combination of photovoltaics and electrolysis (PV–EL), the combination of wind power and electrolysis (W–EL) and the combination of hydropower and electrolysis (H–EL). The selected criteria that were used in the evaluation, for each of the seven hydrogen production processes are CO2 emissions, operation and maintenance costs, capital cost, feedstock cost and hydrogen production cost. According to the evaluation, the processes that combine renewable energy sources with electrolysis (PV–EL, W–EL and H–EL) rank higher in classification than conventional processes (SMR, POX, CG and BG).  相似文献   

4.
In this study, we present a comparative environmental impact assessment of possible hydrogen production methods from renewable and non-renewable sources with a special emphasis on their application in Turkey. It is aimed to study and compare the performances of hydrogen production methods and assess their economic, social and environmental impacts, The methods considered in this study are natural gas steam reforming, coal gasification, water electrolysis via wind and solar energies, biomass gasification, thermochemical water splitting with a Cu–Cl and S–I cycles, and high temperature electrolysis. Environmental impacts (global warming potential, GWP and acidification potential, AP), production costs, energy and exergy efficiencies of these eight methods are compared. Furthermore, the relationship between plant capacity and hydrogen production capital cost is studied. The social cost of carbon concept is used to present the relations between environmental impacts and economic factors. The results indicate that thermochemical water splitting with the Cu–Cl and S–I cycles become more environmentally benign than the other traditional methods in terms of emissions. The options with wind, solar and high temperature electrolysis also provide environmentally attractive results. Electrolysis methods are found to be least attractive when production costs are considered. Therefore, increasing the efficiencies and hence decreasing the costs of hydrogen production from solar and wind electrolysis bring them forefront as potential options. The energy and exergy efficiency comparison study indicates the advantages of biomass gasification over other methods. Overall rankings show that thermochemical Cu–Cl and S–I cycles are primarily promising candidates to produce hydrogen in an environmentally benign and cost-effective way.  相似文献   

5.
Apart from being a major feedstock for chemical production, hydrogen is also a very promising energy carrier for the future energy. Currently hydrogen is predominantly produced via fossil routes, but as green energy sources are gaining a larger role in the energy mix, novel and green production routes are emerging. The most abundant renewable hydrogen sources are water and biomass, which allow several possible processing routes, such as electrolysis, thermochemical cycles and gasification. By introducing heat to the process the required electricity demand can be reduced (high temperature electrolysis) or practically eliminated (thermochemical cycles). Each renewable hydrogen production route has its own strength and weaknesses; the choice of the most suitable method is always dependent on the economical potentials and the location. The aim of this paper is to evaluate the different high temperature, renewable hydrogen production technologies.  相似文献   

6.
Solar decarbonization processes are related to the different thermochemical conversion pathways of hydrocarbon feedstocks for solar fuels production using concentrated solar energy as the external source of high-temperature process heat. The main investigated routes aim to convert gaseous and solid feedstocks (methane, coal, biomass …) into hydrogen and syngas via solar cracking/pyrolysis, reforming/gasification, and two-step chemical looping processes using metal oxides as oxygen carriers, further associated with thermochemical H2O/CO2 splitting cycles. They can also be combined with metallurgical processes for production of energy-intensive metals via solar carbothermal reduction of metal oxides. Syngas can be further converted to liquid fuels while the produced metals can be used as energy storage media or commodities. Overall, such solar-driven processes allow for improvements of conversion yields, elimination of fossil fuel or partial feedstock combustion as heat source and associated CO2 emissions, and storage of intermittent solar energy in storable and dispatchable chemical fuels, thereby outperforming the conventional processes. The different solar thermochemical pathways for hydrogen and syngas production from gaseous and solid carbonaceous feedstocks are presented, along with their possible combination with chemical looping or metallurgical processes. The considered routes encompass the cracking/pyrolysis (producing solid carbon and hydrogen) and the reforming/gasification (producing syngas). They are further extended to chemical looping processes involving redox materials as well as metallurgical processes when metal production is targeted. This review provides a broad overview of the solar decarbonization pathways based on solid or gaseous hydrocarbons for their conversion into clean hydrogen, syngas or metals. The involved metal oxides and oxygen carrier materials as well as the solar reactors developed to operate each decarbonization route are further described.  相似文献   

7.
Hydrogen produced from solar energy is one of the most promising solar energy technologies that can significantly contribute to a sustainable energy supply in the future. This paper discusses the unique advantages of using solar energy over other forms of energy to produce hydrogen. Then it examines the latest research and development progress of various solar-to-hydrogen production technologies based on thermal, electrical, and photon energy. Comparisons are made to include water splitting methods, solar energy forms, energy efficiency, basic components needed by the processes, and engineering systems, among others. The definitions of overall solar-to-hydrogen production efficiencies and the categorization criteria for various methods are examined and discussed. The examined methods include thermochemical water splitting, water electrolysis, photoelectrochemical, and photochemical methods, among others. It is concluded that large production scales are more suitable for thermochemical cycles in order to minimize the energy losses caused by high temperature requirements or multiple chemical reactions and auxiliary processes. Water electrolysis powered by solar generated electricity is currently more mature than other technologies. The solar-to-electricity conversion efficiency is the main limitation in the improvement of the overall hydrogen production efficiency. By comparison, solar powered electrolysis, photoelectrochemical and photochemical technologies can be more advantageous for hydrogen fueling stations because fewer processes are needed, external power sources can be avoided, and extra hydrogen distribution systems can be avoided as well. The narrow wavelength ranges of photosensitive materials limit the efficiencies of solar photovoltaic panels, photoelectrodes, and photocatalysts, hence limit the solar-to-hydrogen efficiencies of solar based water electrolysis, photoelectrochemical and photochemical technologies. Extension of the working wavelength of the materials is an important future research direction to improve the solar-to-hydrogen efficiency.  相似文献   

8.
Water electrolysis is the most promising method for efficient production of high purity hydrogen (and oxygen), while the required power input for the electrolysis process can be provided by renewable sources (e.g. solar or wind). The thus produced hydrogen can be used either directly as a fuel or as a reducing agent in chemical processes, such as in Fischer–Tropsch synthesis. Water splitting can be realized both at low temperatures (typically below 100 °C) and at high temperatures (steam water electrolysis at 500–1000 °C), while different ionic agents can be electrochemically transferred during the electrolysis process (OH, H+, O2−). Singular requirements apply in each of the electrolysis technologies (alkaline, polymer electrolyte membrane and solid oxide electrolysis) for ensuring high electrocatalytic activity and long-term stability. The aim of the present article is to provide a brief overview on the effect of the nature and structure of the catalyst–electrode materials on the electrolyzer's performance. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The current trends, limitations and perspectives for future developments are summarized for the diverse electrolysis technologies of water splitting, while the case of CO2/H2O co-electrolysis (for synthesis gas production) is also discussed.  相似文献   

9.
Chemical looping technology for capturing and hydrothermal processes for conversion of carbon are discussed with focused and critical assessments. The fluidized and stationary reactor systems using solid, including biomass, and gaseous fuels are considered in chemical looping combustion, gasification, and reforming processes. Sustainability is emphasized generally in energy technology and in two chemical looping simulation case studies using coal and natural gas. Conversion of captured carbon to formic acid, methanol, and other chemicals is also discussed in circulating and stationary reactors in hydrothermal processes. This review provides analyses of the major chemical looping technologies for CO2 capture and hydrothermal processes for carbon conversion so that the appropriate clean energy technology can be selected for a particular process. Combined chemical looping and hydrothermal processes may be feasible and sustainable in carbon capture and conversion and may lead to clean energy technologies using coal, natural gas, and biomass. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
非化石能源制氢技术综述   总被引:1,自引:1,他引:0  
在现今的经济社会和未来的低碳经济中H2将发挥重要作用.非化石能源制氢是化石能源短缺和温室气体排放等约束下的可持续制氢路径.综述了可再生电力电解制氢、核能制氢、太阳能制氢和生物质能制氢等四种非化石能源制氢技术的工作原理、流程设备和技术特点,最后对我国未来非化石能源制氢的路线选择进行了评论.  相似文献   

11.
《Energy》2005,30(14):2672-2689
Carbon sequestration is a distinct technological option with a potential for controlling carbon emissions; it complements other measures, such as improvements in energy efficiency and utilization of renewable energy sources. The deployment of carbon sequestration technologies in electricity generation and hydrogen production will increase the production costs of these energy carriers. Our economic assessment has shown that the introduction of carbon sequestration technologies in Europe in 2020, will result in an increase in the production cost of electricity by coal and natural gas technologies of 30–55% depending on the electricity-generation technology used; gas turbines will remain the most competitive option for generating electricity; and integrated gasification combined cycle technology will become competitive. When carbon sequestration is coupled with natural-gas steam reforming or coal gasification for hydrogen production, the production cost of hydrogen will increase by 14–16%. Furthermore, natural-gas steam reforming with carbon sequestration is far more economically competitive than coal gasification.  相似文献   

12.
The well-to-wheels (WTW) analysis of energy conservation and greenhouse gas emission of advanced scooters associated with new transportation fuels is studied in the present work. Focus is placed on fuel cell scooter technologies, while the gasoline-powered scooter equipped with an internal combustion engine (ICE) serves as a reference technology. The effect of various pathways of hydrogen production on the well-to-tank (WTT) efficiency for energy is examined. Both near-term and long-term hydrogen production options are explored, such as purification of coke oven gas (COG), steam reforming of natural gas, water electrolysis by generation mix and renewable electricity, and gasification of herbaceous biomass. Then, the WTW efficiency of fuel cell scooters for various hydrogen production options is compared with that of the conventional ICE scooters and electric scooters. Results showed that the fuel cell scooters fueled with COG-based hydrogen could achieve the highest reduction benefits in energy consumption and GHG emission. Finally, the potential for hydrogen production from COG resulting from the coking process in steelworks is evaluated, which is anticipated as a near-term hydrogen production for helping transition to a hydrogen energy economy in Taiwan.  相似文献   

13.
《Journal of power sources》2006,157(1):411-421
A smooth transition from gasoline-powered internal combustion engine vehicles to ecologically clean hydrogen fuel cell vehicles depends on the process used for hydrogen production. Three technologies for hydrogen production are considered here: traditional hydrogen production via natural gas reforming, and the use of two renewable technologies (wind and solar electricity generation) to produce hydrogen via water electrolysis. It is shown that a decrease of environmental impact (air pollution and greenhouse gas emissions) as a result of hydrogen implementation as a fuel is accompanied by a decline in the economic efficiency (as measured by capital investments effectiveness). A mathematical procedure is proposed to obtain numerical estimates of environmental and economic criteria interactions in the form of sustainability indexes. On the basis of the obtained sustainability indexes, it is concluded that hydrogen production from wind energy via electrolysis is more advantageous for mitigating greenhouse gas emissions and traditional natural gas reforming is more favorable for reducing air pollution.  相似文献   

14.
目的   化石燃料和新能源电力在使用和发展中面临着问题与挑战。为解决传统炼化企业依赖化石燃料制氢中的碳排放问题,和新能源电力发展中的波动性问题提供建议,有必要对氢气制备技术的应用与发展,和传统炼化企业的氢气网络状况进行梳理。 方法   调研了氢气制备技术的应用与发展,尤其关注了关键技术电解水制氢技术的应用发展;分氢制备、氢使用、氢纯化三部分对传统炼化企业的氢气网络进行了深入剖析。 结果   通过总结,提出通过电解水制氢技术将富余的新能源电力与传统炼化企业氢网络相结合的设想。在传统炼化企业附近布置新能源电给,不但可以供炼厂日常用电,还可将因波动性大而无法直接利用的弃电部分,直接通过电解水制氢技术,制氢供传统炼化企业使用,有效降低传统炼化企业的碳排放强度。 结论   要解决化石燃料使用中的碳排放问题与新能源电力使用中波动性高的问题,实现新能源制氢在传统炼化企业的应用,还面临着诸多挑战。  相似文献   

15.
The utilization of fossil fuels causes adverse effects on the human and environment and the world is facing the depletion of these resources. The conventional technologies available for hydrogen production create greenhouse gases which cause a serious threat to the surroundings. Hence, there is a need to create a renewable and alternative technique for hydrogen production. The biological method acts as renewable technology to conventional technologies. For the present and future generations, the development of bioreactors may provide a sustainable route to meet cleaner hydrogen production. The conventional methods like reforming process, gasification process, thermochemical method, water electrolysis and photoelectrochemical method are not sustainable which emits toxic gases and requires a large amount of energy but in the application of bioreactors the cleaner fuel can be obtained and wastewater can be treated efficiently. The objectives of this review are to estimate the efficiency of reactors involving dark fermentation reactors (suspended and attached growth reactors), photobioreactors (tubular and flat plate reactors) and microbial electrolysis cell bioreactors along with their recent advancements in hydrogen production. This article also highlighted the comprehensive review about the substrate utilization, waste treatment, the principle of reactor process and recent process developments. Although several methods are available for hydrogen production, important and innovative discoveries and process configurations in pilot-scale are needed to estimate the potential of each bioreactor to provide sustainable and cleaner fuel production. Through this review, the present status of bioreactors in hydrogen production and their scale-up opportunities can be determined.  相似文献   

16.
This article broadly reviews the state-of-the-art technologies for hydrogen production routes, and methods of renewable integration. It outlines the main techno-economic enabler factors for Australia to transform and lead the regional energy market. Two main categories for competitive and commercial-scale hydrogen production routes in Australia are identified: 1) electrolysis powered by renewable, and 2) fossil fuel cracking via steam methane reforming (SMR) or coal gasification which must be coupled with carbon capture and sequestration (CCS). It is reported that Australia is able to competitively lower the levelized cost of hydrogen (LCOH) to a record $(1.88–2.30)/kgH2 for SMR technologies, and $(2.02–2.47)/kgH2 for black-coal gasification technologies. Comparatively, the LCOH via electrolysis technologies is in the range of $(4.78–5.84)/kgH2 for the alkaline electrolysis (AE) and $(6.08–7.43)/kgH2 for the proton exchange membrane (PEM) counterparts. Nevertheless, hydrogen production must be linked to the right infrastructure in transport-storage-conversion to demonstrate appealing business models.  相似文献   

17.
Biomass has appeared as one of the most encouraging renewable energy sources for the replacement of fossil fuels. An extensive study about the prospective of biomass to produce renewable energy in Pakistan has been exhibited in this article, which takes into account Pakistan's current energy and future potential. A new generation of transformative energy conversion technologies has been developed, including chemical looping. This technique has the potential to control air pollution and clean fuel production, all of which have been major global challenges of this century. Through recent research, the study aims to aid in understanding of biomass-based chemical looping gasification and its development. CHP and CCHP systems are developed processes that produce power, heat, and cooling. Systems using fuel cells have greater efficiency, between 60 and 70%. Additionally, the SOFC-based power generating techniques are associated with the best electrical efficiency (67%).  相似文献   

18.
The combination of a power to methanol process with the use of waste for carbon supply turns out to be a cleaver solution for sustainable chemical production and waste management as well as long-term energy storage. In the current work, an innovative scheme which integrates waste and energy conversion to produce methanol is addressed. Within the proposed configuration syngas is produced from waste gasification and enriched with hydrogen produced through water electrolysis, in order to accomplish methanol synthesis requirements. A techno-economic and environmental analysis of the hybrid scheme is proposed together with its comparison with waste to methanol and direct power to methanol technologies. Direct waste conversion into methanol is today the most attractive solution. In a near future, however, considering the increase of the renewable share of power and reduction of power cost, the hybrid scheme may become a quite attractive solution.  相似文献   

19.
Exergetic and energetic analysis has been utilized to estimate the effect of process design and conditions on the hydrogen purity and yield, exergetic efficiencies and CO2 avoided. Methane was chosen as a model compound for evaluating single stage separation. Simple steam reforming was considered as the base – case system. The other chemical processes that were considered were steam reforming with CO2 capture with and without chemical looping of a reactive carbon dioxide removal agent, and steam gasification with both the Boudouard reaction catalyst and the reactive carbon dioxide removal agent with and without the solids regeneration. The information presented clearly demonstrates the differences in efficiencies between the various chemical looping processes for hydrogen generation. The incremental changes in efficiencies as a function of process parameters such as temperature, steam amount, chemical type and amount were estimated. Energy and exergy losses associated with generation of syngas, separation of hydrogen from COx as well as exergetic loss associated with emissions are presented. The optimal conditions for each process by minimizing these losses are presented. The majority of the exergy destruction occurs due to the high irreversibility of chemical reactions. The results of this investigation demonstrate the utility of exergy analysis. The paper provides a procedure for the comparison of various technologies for the production of hydrogen from carbon based materials based on First and Second Law Analysis. In addition, two figures of merit, namely the comparative advantage factor and the sustainable advantage factor have been proposed to compare the various hydrogen production methods using carbonaceous fuels.  相似文献   

20.
Hydrogen is produced on a large scale by a wide variety of processes starting with feedstocks like natural gas, crude oil products to coal as well as water-using processes like steam reforming, partial oxidation, coal gasification, metal-water processes and electrolysis. Hydrogen is also recovered from various gas streams especially in refineries.Depending on the basic energy scenarios to be used, steam reforming natural gas will remain the major hydrogen source from today till tomorrow, i.e. the turn of the century. Coal gasification will significantly increase in its share for hydrogen production. This will be achieved via newly developed coal gasification processes.The development of thermochemical hydrogen production technology as well as biological hydrogen production technologies will progress, but their widespread application remains to be seen in the next century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号