首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Applications of ultrafiltration membrane often deal with feed streams containing amylose starch. This paper describes a detailed investigation of amylose fouling during ultrafiltration. Commercial membranes made of polysulfone and fluoro polymer were used. Both adsorptive and ultrafiltration fouling were investigated. Experiments using different membrane characteristics, feed concentrations and trans-membrane pressures were carried out. The resulting fouling was characterized by water flux and contact angle measurements and was visualized by scanning electron microscopy (SEM). The results suggest that solute adsorption has occurred as noticed by significant water flux reductions as well as changes in membrane characteristics. Further, both reversible and irreversible fouling have occurred during ultrafiltration with irreversible fouling was more dominant. Apparently, cake layer formation initiated by either adsorption due to hydrophobic–hydrophobic interactions or pore blocking is the dominant fouling mechanism. However, pore narrowing instead of pore blocking was also observed for the membrane having large and relative uniform pore structure or for the ultrafiltration using low trans-membrane pressure or low solute concentration. Membrane autopsy using SEM confirmed the formation of solute layer on the membrane surface.  相似文献   

2.
The effects of membrane pore size and operating pressure on filtration flux, membrane fouling and solute rejections of soymilk during ultrafiltration were studied. Soymilk was concentrated from an initial level of 6.5% solid content to 20% solid content using ultrafiltration membranes. Hollow fibre cross‐flow type cartridges having molecular weight cut‐off (MWCO) as 1, 10 and 30 kDa were used in the experiments. Filtration data were satisfactorily fitted to De La Garza and Boulton's exponential model to find the exponential fouling coefficient (k) and the membrane resistance (Rm). The permeate fluxes obtained in 10 and 30‐kDa MWCO membranes were found to be approximately four times higher than that of 1‐kDa MWCO membrane, at transmembrane pressure between 100 and 240 kPa. The average flux obtained was 0.7, 3.15 and 2.7 L m?2‐h for 1, 10 and 30‐kDa MWCO membranes, respectively. The Rm value of membranes was found to decrease as the MWCO of membranes increased and transmembrane pressure decreased. The total solid content of permeates obtained by these membranes was between 0.45% and 1.4%. Membrane‐concentrated soymilk was found to have lighter colour and almost half the value of viscosity compared with evaporated milk.  相似文献   

3.
Membrane fouling by natural organic matter (NOM) was investigated in microgranular adsorptive filtration (μGAF) systems, in which a thin layer of adsorbent is predeposited on low-pressure membranes. The adsorbents tested included heated aluminum oxide particles (HAOPs), ion exchange (IX) resin, and powdered activated carbon (PAC). Size exclusion chromatography (SEC) separated the NOM into four apparent MW fractions with significant UV???. HAOPs and the IX resin performed almost identically with respect to removal of these fractions, and differently from PAC. However, while HAOPs and PAC reduced fouling substantially, IX resin did not, indicating that fouling could not be attributed to the NOM fractions detected by SEC. Rather, the key foulants appear to comprise a very small fraction of the NOM with almost no UV??? absorbance. Alginate, a strongly fouling surrogate for natural polysaccharides, is adsorbed effectively by HAOPs, but not by IX resin or PAC, suggesting that polysaccharides sometimes play a key role in membrane fouling by NOM.  相似文献   

4.
The aim of this study was to evaluate the performance of three different commercial polymeric ultrafiltration (UF) membranes during clarification of raw apple juice, comparatively. The influence of membrane pore size, roughness, and hydrophobicity on flux profile and fouling was investigated. The initial flux was simultaneously decreased at the beginning of the process, and quite steady flux was obtained in the membranes with rougher surface and more hydrophobic nature. As the pore size and hydrophobicity increased, the reversible fouling became the major resistance, while cake formation was more prominent for the membranes with narrower pore size. The overall quality results revealed that the main quality characteristics of the raw juice can be better retained by using the membranes that have higher resistance to fouling.  相似文献   

5.
Membrane fouling is a critical limitation on the application of membranes to wastewater reuse. This work aims to understand the fouling phenomenon which occurs in ultrafiltration (UF; 17500 molecular weight cutoff (MWCO)) and nanofiltration (NF; 250 MWCO) membranes, with and without pretreatment. For this purpose, the molecular weight (MW) distribution of the organics has been used as a parameter to characterize the influent, the permeate, and the foulant on the membrane surface. The variation of foulant concentration on the membrane due to pretreatment of the influent by flocculation and/or adsorption was investigated in detail. With the UF membrane, the peak of the MW distribution of organics in the permeate depended on the pretreatment; for example, the weight-averaged MW (Mw) of 675 without pretreatment shifted down to 314 with pretreatment. In the case of the NF membrane, the Mw of organics in the permeate was 478 (without pretreatment) and 310 (with flocculation followed by adsorption). The Mw of the organics in the foulant on the membrane surface was 513 (UF) and 192 (NF) without pretreatment and 351 (UF) and 183 (NF) after pretreatment with flocculation followed by adsorption, respectively. Without the pretreatment, the foulant concentration was higher on both membranes. The difference was more significant on the UF membrane than on the NF membrane. For both membranes, the flocculation-and-then-adsorption pretreatment proved very effective.  相似文献   

6.
The release of cyanobacterial toxins, such as microcystin-LR, in drinking water supplies is of increasing concern. In this study, we investigated the use of ultrafiltration (UF) combined with adsorption on powdered activated carbon (PAC) for the removal of microcystin-LR from drinking water. Process variables examined included PAC type, PAC dosage, membrane characteristics (material and pore size), and the presence of natural organic matter (NOM). Due to greater mesopore volume, wood-based activated carbon was up to 4-times more effective at removing microcystin-LR than coconut-based carbon, depending on contact time. Cellulose acetate (CA) membranes with a molecular weight cutoff (MWCO) of 20,000 Da did not reject or adsorb microcystin-LR. Membranes composed of polyethersulfone (PES) of similar pore size, on the other hand, adsorbed microcystin-LR presumably through hydrophobic interactions. A PES membrane with a MWCO of 5000 Da sorbed microcystin-LR, and also rejected 8.4% of the toxin through a size exclusion mechanism. When PAC was coupled to UF using PES membranes, greater removal of microcystin-LR occurred compared to when CA membranes were used due to sorption of the toxin to the PES membrane surface. The presence of Suwannee River fulvic acid (SRFA) reduced microcystin-LR removal by PAC-UF, primarily due to competition between SRFA and microcystin-LR for sites on the PAC surface.  相似文献   

7.
The use of nanofiltration (NF) membranes for water recycling requires an improved understanding of the factors that govern rejection of potentially harmful organic trace contaminants. Rejections of 15 perfluorochemicals (PFCs)--5 perfluorinated sulfonates, 9 perfluorinated carboxylates, and perfluorooctane sulfonamide (FOSA)--by four nanofiltration membranes (NF270, NF200, DK, and DL) were measured. Rejections for anionic species were >95% for MW >300 g/mol. FOSA (MW = 499 g/mol), which is uncharged at the pH of deionized water (5.6), was rejected as little as 42% (DL membrane). Decreasing the pH to less than 3 decreases rejection by up to 35%, effectively increasing the MWCO of NF270 by >200 g/mol, while a 2500 mg/L NaCl equivalent increase in ionic strength reduces rejections <1%. An alginate fouling layer increases transmission, where quantifiable, by factors of 4-8. Accumulation of PFCs on membranes was measured after the completion of rejection experiments. Based on rejection kinetics and the extent of sorption, we infer that two different sorption processes are significant: charged species adsorb quickly to the membrane surface, whereas the uncharged FOSA absorbs within the membrane matrix in a much slower process.  相似文献   

8.
Adsorbent particles added to ultrafiltration (UF) systems treating drinking water can remove natural organic matter (NOM) and some other contaminants from the water, but their effect on membrane fouling is inconsistent-in some cases, fouling is reduced, and in others, it is exacerbated. This research investigated the behavior of UF systems to which powdered activated carbon (PAC), heated iron oxide particles (HIOPs), or (nonadsorbent) SiO2 particles were added. On a mass basis, the PAC removed the most NOM from solution, the HIOPs removed less, and the SiO2 removed essentially none. However, in the case of both PAC and SiO2, increasing the dose of solids led to a steady increase in fouling, whereas the opposite trend applied when HIOPs were added. In the absence of NOM, none of the solids fouled the membrane significantly. Thus, even though NOM is a causative agent for fouling, removing it from solution does not necessarily reduce fouling; the mechanism of removal can be just as important as the absolute amount removed, if the removal occurs in a cake layer near the membrane surface. Scanning electron microscopy images of the cake layers formed in the three systems suggest that the NOM binds PAC or SiO2 particles to one another and to the membrane surface, so that the particles become part of the foulant in the system. By contrast, the NOM appears to bind HIOPs to one another but not to the membrane. This process leaves enough pore space in the cake layer for water to reach the membrane with minimal resistance, and it reduces the tendency for either the NOM or the HIOPs to foul the membrane surface.  相似文献   

9.
The effect of membrane pore size on the molecular weight distribution and selected functional properties of a protein hydrolysate produced from soy isolate and Pronase was examined. Molecular weight distributions were similar for permeates from 5000, 10,000 and 50,000 molecular weight cut-off (MWCO) membranes: two large fractions at 2300 and 1000 daltons. The 100,000 MWCO membrane resulted in three fractions of 25,000, 13,000 and 2300 daltons. Solubility of the hydrolysate increased with decrease in MWCO, while foam stability decreased.  相似文献   

10.
The effects of membrane property on the permeate flux, membrane fouling and quality of clarified pineapple juice were studied. Both microfiltration (membrane pore size of 0.1 and 0.2 μm) and ultrafiltration (membrane molecular weight cut-off (MWCO) of 30 and 100 kDa) membranes were employed. Membrane filtration did not have significant effects on the pH, reducing sugar and acidity of clarified juice whereas the suspended solids and microorganism were completely removed. The 0.2 μm membrane gave the highest permeate flux, total vitamin C content, total phenolic content and antioxidant capacity as well as the highest value of irreversible fouling. Based on these results, the membrane with pore size of 0.2 μm was considered to be the most suitable membrane for the clarification of pineapple juice. The optimum operating conditions for the clarification pineapple juice by membrane filtration was a cross-flow velocity of 3.4 ms−1 and transmembrane pressure (TMP) of 0.7 bar. An average flux of about 37 lm−2 h−1 was obtained during the microfiltration of pineapple juice under the optimum conditions using batch concentration mode.  相似文献   

11.
Various natural organic matter (NOM) constituents were evaluated in terms of their biodegradability, disinfection byproduct (DBP) formation potentials, and membrane fouling. The biodegradability of NOM was evaluated with respect to biodegradable dissolved organic carbon (BDOC) and its inhibition control. NOM was divided into (i) colloidal and noncolloidal NOM, using a dialysis membrane with a molecular weight cutoff of 3500 Da and (ii) hydrophobic, transphilic, and hydrophilic NOM constituents, using XAD-8/4 resins. The colloidal, and noncolloidal hydrophilic, NOM were identified as being more problematic than the other components, exhibiting relatively higher biodegradability and reactivity toward DBP formation potential. A higher biodegradability especially can provide a high risk of membrane biofouling, if a membrane is fouled by highly biodegradable NOM. Colloidal, and noncolloidal hydrophilic, NOM constituents were also shown as major foulants of negatively charged membranes due to their high neutral fractions. Filter adsorber (F/A) types of activated carbons were evaluated in terms of removals of NOM, DBP formation potential, and BDOC and were compared to conventional processes and a nanofiltration membrane. The F/A process exhibited a comparatively good efficiency, especially in DBP and BDOC control, but was not so good at removing NOM. This suggests that F/A could potentially be combined with a membrane process to minimize the DBP formation potential and bio-/organic-fouling (i.e., F/A process as a pretreatment for a membrane process).  相似文献   

12.
Mixed cellulose ester (MCE) flat membranes were used to clarify black mulberry juice, the yield of which was limited by fouling. The effects of membrane pore size (0.025, 0.1 and 0.22 μm), transmembrane pressure (0.5, 1, 1.5 and 200 kPa), and cross‐flow velocity (0.1, 0.2, 0.3 and 0.4 m s?1) on membrane fouling were evaluated; the results showed that fouling increased with increased pore size and pressure, and decreased with increased velocity. Analysis of different resistances showed that both reversible and irreversible fouling resistances have an important role in fouling‐resistance changes. There is no cake resistance in all processes. Microstructure analysis of membrane using scanning electron microscopy confirmed the theory that intermediate blocking was the dominant fouling mechanism in MCE 0.025 μm, and standard blocking was the dominant mechanism in MCE 0.1 and 0.22 μm.  相似文献   

13.
Natural organic matter (NOM) from five water sources was fractionated using XAD resins and ultrafiltration membranes into different groups based on hydrophobicity and molecular weight (MW), respectively. The disinfection byproduct formation from each fraction during chlorination and chloramination was studied. In tests using chlorination, hydrophobic and high MW (e.g., >0.5 kDa) precursors produced more unknown total organic halogen (UTOX) than corresponding hydrophilic and low MW (e.g., <0.5 kDa) precursors. Trihaloacetic acid (THAA) precursors were more hydrophobic than trihalomethane (THM) precursors. The formation of THM and THAA was similar among different fractions for a water with low humic content. Hydrophilic and low MW (<0.5 kDa) NOM fractions gave the highest dihaloacetic acid (DHAA) yields. No significant difference was found for DHAA formation among different NOM fractions during chloramination. Increasing pH from 6 to 9 led to lower TOX formation for hydrophobic and high MW NOM fractions but had little impact on TOX yields from hydrophilic and low MW fractions. Bromine and iodine were more reactive with hydrophilic and low MW precursors as measured by THM or HAA formation than their corresponding hydrophobic and high MW precursors. However, hydrophobic and high MW precursors produced more UTOX when reacting with bromine and iodine.  相似文献   

14.
Ultrafiltration was applied to diluted potato fruit juice, a side-stream from potato starch production. The aim of the study was to selectively concentrate the potato proteins in the permeate, while isolating polyphenol oxidase (PPO) in the retentate. A profound difference was found in protein retention between two 300-kDa molecular weight cutoff (MWCO) ultrafiltration membranes, of either regenerated cellulose (RC) or polyethersulfone (PES). The use of the 300-kDa MWCO RC membrane resulted in a twofold higher retentate protein content as well as total retention of all PPO activity, as compared with the PES membrane. Comparison tests with 100- and 300-kDa MWCO PES membranes indicated that concentration polarization and gel layer formation, and not MWCO definitions, were governing factors for protein retention, since proteins with a MW of 10 kDa were retained in all the experiments. PPO activity in potato fruit juice was measured in permeate and retentate to assess its selective retention by the applied ultrafiltration processes. Of the specific PPO activity, 94–100 % was retained by either 300 MWCO RC or 100 MWCO PES, while only 49 % specific activity was retained by the 300 MWCO PES. By in situ blotting experiments, the molecular weight of active PPO was found to be present at three different molecular weights, at positions of 40, 47, and 100 kDa, respectively, with the major activity present at 47 kDa.  相似文献   

15.
The use of microfiltration membranes in the dairy industry to remove bacterial spores has been applied for some time using the so-called “bactocatch” process. However, these microfiltration units have high energy demands since high linear velocities are required during operation, to avoid problems related to fouling and concentration polarization. In this work, optimization of a backflushing technique combined with reverse asymmetric membranes (‘backshock’ technique) was used to avoid the fouling and concentration polarization problems, allowing the use of low linear velocities and resulting in low-energy costs. In the novel ‘backshock’ technique, the permeate is pressurized during a very short time interval (less than 1 s) and with a frequency around 0.2-1 s−1. The benefit of using a reverse asymmetric membrane is related to the formation of a very open fouling layer just inside the porous support layer and the build-up of a concentration profile of the proteins inside the porous structures. The microfiltration of skim milk using ceramic and polymeric membranes was studied with different membrane structures. The backshock technique, combined with reverse asymmetric membranes of pore size of 0.87 μm, allows the effects of concentration polarization and fouling to be controlled, achieving very high (500 L h−1 m−2) and stable fluxes with 100% casein transmission and a high retention of spores (reduction by a factor 104-105) even at low linear velocities (0.5-1 ms−1).  相似文献   

16.
The colloidal material in juice obtained from Red Delicious apples held in cold storage for over 6 months was observed to spontaneously aggregate to form ordered flocculation patterns. These flocculation patterns could be altered by heat treatment and by gelatin or antioxidant addition. The specific resistance of the fouling layer produced by each juice during microfiltration could be qualitatively predicted by examining the structure of macroscopic flocculation patterns. Environmental scanning electron microscopy (ESEM) photos of the various hydrated fouling layers indicated that loose flocs appeared to compress and rearrange on the membrane surface, producing smooth, low porosity secondary membranes. Densely packed cross-linked aggregate networks also formed low porosity structures, once again creating a fouling layer with high resistance. The lowest resistance fouling layers were produced when the flocs were dense enough to resist compression but porous enough to provide pathways for permeate flow. Field emission scanning electron microscopy (FESEM) and ESEM images indicated that, in many cases, the spacial distribution of solids in the microscopic aggregates were reminiscent of those in the macroscopic flocs. Such scaling relationships are typical of fractal systems.  相似文献   

17.
Our objective was to determine the effect of concentration factor (CF) on the removal of serum protein (SP) from skim milk during microfiltration (MF) at 50°C using a 0.3-μm-pore-size spiral-wound (SW) polymeric polyvinylidene fluoride (PVDF) membrane. Pasteurized (72°C for 16 s) skim milk was MF (50°C) at 3 CF (1.50, 2.25, and 3.00×), each on a separate day of processing starting with skim milk. Two phases of MF were used at each CF, with an initial startup-stabilization phase (40 min in full recycle mode) to achieve the desired CF, followed by a steady-state phase (90-min feed-and-bleed with recycle) where data was collected. The experiment was replicated 3 times, and SP removal from skim milk was quantified at each CF. System pressures, flow rates, CF, and fluxes were monitored during the 90-min run. Permeate flux increased (12.8, 15.3, and 19.0 kg/m2 per hour) with decreasing CF from 3.00 to 1.50×, whereas fouled water flux did not differ among CF, indicating that the effect of membrane fouling on hydraulic resistance of the membrane was similar at all CF. However, the CF used when microfiltering skim milk (50°C) with a 0.3-μm polymeric SW PVDF membrane did affect the percentage of SP removed. As CF increased from 1.50 to 3.00×, the percentage of SP removed from skim milk increased from 10.56 to 35.57%, in a single stage bleed-and-feed MF system. Percentage SP removal from skim milk was lower than the theoretical value. Rejection of SP during MF of skim milk with SW PVDF membranes was caused by fouling of the membrane, not by the membrane itself and differences in the foulant characteristic among CF influenced SP rejection more than it influenced hydraulic resistance. We hypothesize that differences in the conditions near the surface of the membrane and within the pores during the first few minutes of processing, when casein micelles pass through the membrane, influenced the rejection of SP because more pore size narrowing and plugging occurred at low CF than at high CF due to a slower rate of gel layer formation at low CF. It is possible that percentage removal of SP from skim milk at 50°C could be improved by optimization of the membrane pore size, feed solution composition and concentration, and controlling the rate of formation of the concentration polarization-derived gel layer at the surface of the membrane during the first few minutes of processing.  相似文献   

18.
Light colored protein isolates could be produced from aqueous protein extract (at pH 9.0) of defatted cottonseed flour by filtering through an ultrafiltration membrane with 100,000 MWCO (molecular weight cut off) pore size and then spray-drying the retentate. The yield of this protein fraction was approximately 68% of the extracted solid. About 15% of the extracted solid was recovered with the low molecular fraction (50,000 daltons) when the permeate of 100,000 MWCO was applied to 50,000 MWCO membrane. Most of the color-causing pigments were associated with the low molecular fraction.  相似文献   

19.
In this study, the flux decline mechanisms were identified during membrane clarification of red plum juice at several processing parameters, including pore size, membrane type, transmembrane pressure, temperature and velocity. The results were used to investigate the effect of changes in operating conditions on the intensity of membrane fouling. Also, scanning electron microscopy (SEM) was used for analysing fouling‐layer morphology. These results showed that the main mechanism responsible for membrane fouling was cake formation (over 95% fitness) occurring in the first stage of the process. Intermediate, standard and complete blockings were formed during most of the runs as filtration proceeded. The results also indicated that increasing the temperature from 30 to 40 °C was the most effective factor in decreasing cake‐layer fouling, reducing it by about 66.7%. Furthermore, an increase in processing velocity of up to 0.5 m s?1 had the greatest effect on intermediate blocking, reducing it by about 86.1%. Also, increasing pressure up to 2.9 bar completely eliminated standard blocking and complete blocking. Finally, microstructure analysis of membrane using SEM confirmed that cake formation had the greatest impact on membrane fouling.  相似文献   

20.
REVERSE OSMOSIS CONCENTRATION of GREEN TEA JUICE   总被引:1,自引:0,他引:1  
The reverse osmosis concentration of green tea juice was attempted by using membranes prepared from different polymeric materials. the pore sizes of the membranes were also changed in order to investigate the effect of the pore size on the membrane performance. Special attention was focused on the removal of caffeine from the tea juice while retaining other components such as polyphenols and amino acids. Since severe membrane fouling was observed while tea juice was treated at high concentrations, an attempt was made to describe the membrane fouling by a modified gel model that includes the effect of the interaction between the membrane and the tea juice components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号