共查询到16条相似文献,搜索用时 78 毫秒
1.
采用硅烷偶联剂KH-550修饰纳米ZnO,制备了MC尼龙6/纳米ZnO复合材料。力学性能测试表明,当纳米ZnO质量分数为1%时复合材料的力学性能最优,拉伸强度比纯MC尼龙6提高25.6%,断裂伸长率提高165.6%,简支梁冲击强度提高70.1%,这说明纳米ZnO可起到同时增强增韧的作用。扫描电子显微镜分析表明,纳米ZnO质量分数为1%时,纳米ZnO在MC尼龙6基体中分散最好,达到了纳米级分散;由X衍射分析发现,纳米ZnO没有改变MC尼龙6的结晶形态,纳米ZnO质量分数为1%时复合材料的结晶形态结构优越。 相似文献
2.
采用原位聚合反应制备MC尼龙6/纳米ZnO复合材料. 动态高温XRD(20~210℃)分析表明,随着温度的升高,MC尼龙6的α1(200)晶面和α2(002+202)晶面分别发生了收缩和膨胀,纯MC尼龙6和MC尼龙6/纳米ZnO复合材料的α1和α2晶面热膨胀系数分别为aTα1=-8.8×10-5 ℃-1, aTα2=1.6×10-4 ℃-1和aTα1=-1.7×10-4 ℃-1, aTα2=3.4×10-4 ℃-1. 随着温度的升高,MC尼龙6/纳米ZnO复合材料相对结晶度逐渐降低,在熔融温度附近结晶结构基本被破坏,在达到升温高点后的降温过程中产生了重结晶,在20~210℃之间的结构变化基本是可逆的. 加入纳米ZnO提高了MC尼龙6的热稳定性,随着纳米材料含量的增加,复合材料的热稳定性呈上升趋势,分散得越好,热稳定性越强;加入纳米ZnO使MC尼龙6的起始降解温度提高1~9℃,最大失重速率时的温度提高. 相似文献
3.
MC尼龙6/纳米SiO2复合材料的合成 总被引:2,自引:0,他引:2
用原位聚合法制备MC尼龙6/纳米SiO2复合材料。当纳米SiO2的加入量为1%时,力学综合性能最优。与纯MC尼龙相比,拉伸强度提高21%,弯曲模量提高40.3%,简支梁冲击强度提高69.1%,断裂伸长率降低43%。随着纳米SiO2含量的增加,复合材料的力学性能呈现减小趋势。采用SEM、XRD对产物进行了表征,表明采用修饰后的纳米SiO2加入到产物中,粒子分布均匀,粒径分布窄,粒子的粒径在30nm左右。随着纳米SiO2加入量的增加,MC尼龙6/纳米SiO2复合材料的结晶度下降。 相似文献
4.
5.
MC尼龙6/SiO2纳米复合材料的制备与表征 总被引:5,自引:0,他引:5
用原位聚合法制备了MC尼龙6/SiO2纳米复合材料。当纳米SiO2的加入量为1%时,复合材料的力学综合性能最优。与纯MC尼龙相比,拉伸强度提高21%,弯曲模量提高40.3%,简支梁冲击强度提高69.1%,断裂伸长率降低43%。随着纳米SiO2含量的增加,复合材料的力学性能呈现降低趋势。采用SEM、XRD和DSC对产物进行了表征,表明采用修饰后的纳米SiO2加入到产物中,粒子分布均匀,粒径分布窄,粒子的粒径在30nm左右。随着纳米SiO2加入量的增加,MC尼龙6/SiO2纳米复合材料的结晶度下降。复合材料的熔点比未改性的纯MC尼龙6提高了2~3℃左右。 相似文献
6.
用钛酸酯偶联剂改性纳米ZnO制备MC尼龙6/纳米ZnO复合材料。当纳米ZnO加入量为2%时,MC尼龙6/纳米ZnO复合材料力学综合性能最优,与纯MC尼龙6相比,其拉伸强度提高28.4%,断裂伸长率提高152.7%,弯曲模量提高30.2%,冲击强度提高60.5%。从SEM分析可见,ZnO在MC尼龙6中分布均匀,达到纳米级分散;从XRD分析可见,纳米ZnO没有改变MC尼龙6的结晶形态。 相似文献
7.
采用原位聚合反应制备MC尼龙/纳米CaSO4复合材料并对其性能、形貌和结晶形态进行了分析。分析结果表明:复合材料中纳米CaSO4达到了纳米级分散,起到同时增强增韧的作用,复合材料拉伸强度比MC尼龙提高17.4%;弯曲模量提高26.9%;冲击强度提高16.7%。纳米CaSO4的引入没有改变尼龙6的结晶形态;修饰后的纳米CaSO4有利于在MC尼龙中均匀分散。 相似文献
8.
MC尼龙6/纳米TiO2原位复合材料性能研究 总被引:12,自引:0,他引:12
通过阴离子原位聚合法制备了MC尼龙6/纳米TiO2复合材料,采用透射电子显微镜观察了纳米TiO2在复合材料中的分散形态,并研究了纳米TiO2含量对复合材料的热稳定性和力学性能的影响。结果表明:在纳米TiO2质量分数低于2%时,纳米TiO2能较均匀地分散在复合材料中,对复合材料同时具有增强和增韧的作用;纳米TiO2的加入提高了复合材料热稳定性,使MC尼龙6的起始降解温度提高2~3℃,最大失重速率温度大幅度提高,并随纳米TiO2用量的增加而升高。 相似文献
9.
将铝酸酯偶联剂和纳米ZnO同时用超声分散在熔融的己内酰胺中,一步原位聚合制备MC(单体铸塑)尼龙6/ZnO纳米复合材料,应用正交试验对偶联剂的用量和超声温度、时间等工艺参数进行了优化.结果表明,当超声温度为80℃、超声时间为20 min、偶联剂加入量为1.0%(质量分数)时,合成的MC尼龙6/ZnO纳米复合材料力学性能最优.通过SEM和XRD对MC尼龙6/ZnO纳米复合材料进一步的表征表明,ZnO在基体中达到了纳米级的分散,结晶形态理想. 相似文献
10.
采用阴离子聚合法制备了MC尼龙6(MCPA6)/聚砜(PSU)原位复合材料。利用差示扫描量热、热重分析等方法表征了复合材料的热性能,利用X射线衍射研究了复合材料中MCPA6基体的晶型变化,并对复合材料的力学性能进行了表征。结果表明,随着PSU含量的增加,原位复合材料中MCPA6的结晶温度下降,但复合材料的热分解温度不断增加;纯MCPA6和复合材料中的MCPA6均呈现典型的α晶型衍射峰;当PSU质量分数为2%时,MCPA6的结晶度最小,为30.99%,复合材料的拉伸强度和拉伸弹性模量均达最大值,分别为84.78 MPa和830.50 MPa。 相似文献
11.
将不同插层剂改性的蒙脱土与尼龙66(PA66)通过熔融共混制得了纳米复合材料,对复合材料的热变形温度和力学性能进行了研究。结果表明,与纯PA66相比,3种插层剂改性的蒙脱土/PA66纳米复合材料的热变形温度、弯曲模量、弯曲强度均有明显提高,拉伸模量和屈服强度也有所提高,但断裂伸长率和缺口冲击强度则明显下降;含极性羟基的插层剂对复合材料的综合改性效果较好,含2个长链非极性烃基的插层剂改性效果较差;加入环氧树脂后,复合材料的热变形温度、拉伸模量和弯曲模量有所降低,屈服强度、弯曲强度、断裂伸长率和缺口冲击强度则有所增加。 相似文献
12.
13.
14.
MC尼龙/稀土纳米复合材料制备的反应动力学研究 总被引:1,自引:0,他引:1
测定了MC尼龙和MC尼龙/稀土纳米复合材料制备的温度与时间关系曲线,用非等温反应动力学方法对数据进行处理,用多元回归法确定其表观动力学参数。结果表明:MC尼龙和MC尼龙/稀土纳米复合材料制备过程的动力学特征基本相似,是一个并行的聚合/结晶过程;稀土纳米氧化物对MC尼龙制备的阴离子聚合反应有促进作用;MC尼龙和MC尼龙/稀土纳米复合材料制备过程的表观活化能在92~145kJ/mol之间,反应级数在0.9~1之间,频率因子在108~1014之间,MC尼龙和MC尼龙/稀土纳米复合材料制备过程由化学反应步骤控制。 相似文献
15.
通过熔融共混法成功地制备了不同含量蒙脱土的尼龙11/蒙脱土纳米复合材料,利用X衍射(XRD)和透射电镜(TEM)研究了尼龙11/蒙脱土纳米复合材料的微观结构。结果表明,当蒙脱土质量分数小于2%时,形成了剥离型的纳米复合材料,当蒙脱土质量分数超过2%时形成了插层型的纳米复合材料。热重分析表明当蒙脱土质量分数为2%时,纳米复合材料的热分解温度比纯尼龙11提高了27℃。不同蒙脱土含量的纳米复合材料悬臂梁冲击强度均比纯尼龙11的高,但其拉伸强度在蒙脱土质量分数小于8%时降低,以后随蒙脱土含量的增加而提高。 相似文献