首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous nanocrystalline nickel-alumina promoted catalysts with high surface area were prepared by microemulsion (ME) method and employed in dry reforming of methane reaction. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller surface area analysis (BET), temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) techniques. The results showed that the prepared catalysts had high porosity with great surface area and small crystallite size. Among the K2O, MgO, CaO and BaO promoters, the MgO promoter showed considerable effect on catalytic performance and coke suppression of catalyst.  相似文献   

2.
Promoted Fe2O3‐Al2O3‐CuO (FAC) chromium‐free catalysts were prepared for high‐temperature water‐gas shift reactions and characterized by X‐ray diffraction (XRD), Brunauer‐Emmett‐Teller method (BET), temperature‐programmed reduction (TPR), and transmission electron microscopy (TEM) techniques. The catalytic results revealed that among the investigated promoted catalysts with Ce, La, Zn, Y, and Mn as promoters, the Mn‐promoted sample showed higher activity compared to the other promoted catalysts. Increasing the Mn content improved the surface area and catalytic activity. The FAC catalyst promoted with a high Mn content exhibited maximum activity and relatively high stability in high‐temperature water‐gas shift reaction.  相似文献   

3.
Silica-supported molybdenum phosphide, MoP/SiO2 catalysts with different Mo weight loadings were prepared by temperature programmed reduction of the oxidic catalyst precursors, which were prepared via sol-gel technique using ethyl silicate-40 as silica source. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface area measurements, and their catalytic activity in hydrodesulfurization (HDS) was tested with dibenzothiophene (DBT) as model compound. XRD analysis revealed the amorphous nature of the catalyst up to 10 wt% Mo loading and the formation of crystalline MoP phase on amorphous silica support with higher Mo loading. BET surface area showed high surface area for catalysts prepared by sol-gel technique with lower Mo content, and the surface area decreased with increasing in Mo loading. The HDS results showed that prepared MoP/SiO2 exhibited high HDS activity and stability toward the catalytic test. Among the series of catalysts prepared, MoP/SiO2 containing 20 wt% Mo was found to be the most active catalyst. And the effects of reaction temperature and hydrogen pressure on conversion and product selectivity were investigated.  相似文献   

4.
Mesoporous nanocrystalline γ‐alumina was prepared by a template‐free sol‐gel method using aluminum ethoxide as precursor. Significant parameters, such as the water/aluminum ethoxide molar ratio, the pH of the solution, and the time and temperature of aging, were optimized by the Taguchi method to obtain γ‐alumina with a high surface area and pore volume. The influences of the main parameters on the catalytic performance of the prepared catalysts were investigated via dehydration of methanol to dimethyl ether in a fixed‐bed reactor. The catalysts were characterized by X‐ray diffraction, N2 adsorption‐desorption, ammonia temperature‐programmed desorption, and scanning electron microscopy techniques. The results show that the aging temperature had a significant influence on the catalyst performance.  相似文献   

5.
The hydrodealkylation of 1,2,4‐trimethylbenzene (1,2,4‐TMB) to benzene, toluene and xylenes (BTX) was investigated on Ni‐Mg‐Al catalysts prepared by the coprecipitation method. The catalytic performances of these catalysts were considerably influenced by the Mg content of the catalyst. The catalysts were characterized via X‐ray diffraction, H2‐temperature‐programmed reduction, NH3‐temperature‐programmed desorption (TPD), CO2‐TPD, and Fourier transform infrared spectroscopy. The results demonstrated that the appropriate amount of Mg species significantly affected the structural properties and caused the Ni nanoparticles to become highly dispersed. The higher activity of the catalysts might be ascribed to the homogenous distribution of the Ni nanoparticles, and the synergetic effects between Ni0, NiAl2O4 and MgAl2O4 were the key factor for obtaining the BTX.  相似文献   

6.
Autothermal reforming (ATR) of methane was carried out over nanocrystalline Al2O3‐supported Ni catalysts with various Ni loadings. Mesoporous nanocrystalline γ‐Al2O3 powder with high specific surface area was prepared by the sol‐gel method and employed as support for the nickel catalysts. The prepared samples were characterized by X‐ray diffraction, Brunauer‐Emmett‐Teller, temperature‐programmed reduction, temperature‐programmed hydrogenation, and scanning electron microscopy techniques. It is demonstrated that the methane conversion increased with increasing in Ni content and that the catalyst with 25 wt % Ni exhibited the highest activity and a stable catalytic performance in the ATR process, with a low degree of carbon formation. Furthermore, the effects of the reaction temperature, the calcination temperature, the steam/CH4 and O2/CH4 ratios, and the gas hourly space velocity on the catalytic performance of the 25 % Ni/Al2O3 catalyst were investigated.  相似文献   

7.
Methane dry reforming was studied over nanostructure bimetallic Ni‐Co‐MgO catalysts. The catalysts were prepared by coprecipitation with different Ni‐Co contents and characterized by XRD, BET, N2 adsorption/desorption, temperature‐programmed reduction (TPR), SEM, and temperature‐programmed oxidation (TPO) techniques. XRD results let conclude that all samples contained MgO crystallite phases. With a higher Ni content the intensity of the diffraction peaks became stronger, indicating growth of the crystallite size of the prepared solid solutions. BET analysis demonstrated that a higher Ni‐Co content decreased the surface area. The optimal catalyst could be determined which had the highest activity and a good stability in dry reforming reaction.  相似文献   

8.
The influence of copper substitution in La0.8K0.2CuxMn1–xO3 on its catalytic performance for simultaneous removal of NOx and soot under oxygen rich conditions was investigated. A series of catalysts was prepared and then characterized by XRD, SEM, BET, and XPS. The temperature programmed reaction (TPR) method was used to evaluate the catalytic performance of the catalysts. XRD results show that the partial substitution of Cu for Mn promotes the formation of perfect perovskites. SEM and BET results demonstrate that appropriate copper substitution enhances the porosity and increases the specific surface area, leading to conditions which are favorable for heterogeneous catalysis. XPS results indicate that a fraction of the Mn3+ is converted to Mn4+ on the addition of low levels of Cu. By correlation of the physicochemical properties and the catalytic performance, a large specific surface area, high porosity, high content of Mn3+ and synergistic effects of Mn3+ and Cu2+ are seen to favor the simultaneous catalytic removal of NOx and soot.  相似文献   

9.
The influence of preparation methods on structural and catalytic properties of the Fe2O3‐Cr2O3‐CuO catalyst during the high‐temperature water‐gas shift reaction was determined. The prepared samples were characterized by X‐ray diffraction (XRD), Brunauer‐Emmett‐Teller method (BET), and temperature‐programmed reduction (TPR). The results revealed that the type of coprecipitation, i.e., simple, inverse, and differential, had a significant effect on both structural and catalytic properties. The catalyst prepared by the simple precipitation method exhibited higher activity than the catalysts generated by inverse and differential coprecipitation and the commercial catalyst. The types of precipitation agent and iron and chromium precursors were found to have a significant impact on the structural and catalytic features.  相似文献   

10.
Nickel catalysts supported on mesoporous nanocrystalline gamma alumina with various nickel loadings were prepared and employed for thermocatalytic decomposition of methane into CO x -free hydrogen and carbon nanofibers. The prepared catalysts with different nickel contents exhibited mesoporous structure with high surface area in the range of 121.3 to 66.2m2g?1. Increasing in nickel content decreased the pore volume and increased the crystallite size. The catalytic results revealed that the nickel content and operating temperature both play important roles on the catalytic performance of the prepared catalysts. The results showed that increasing in reaction temperature increased the initial conversion of catalysts and significantly decreased the catalyst lifetime. Scanning electron microscopy (SEM) analysis of the spent catalysts evaluated at different temperatures revealed the formation of intertwined carbon filaments. The results showed that increasing in reaction temperature decreased the diameters of nanofibers and increased the formation of encapsulating carbon.  相似文献   

11.
In this work, the composite catalysts, SO42/ZrO2/γ‐Al2O3 (SZA), with different ZrO2 and γ‐Al2O3 mass ratios were prepared and used for the first time for the carbon dioxide (CO2)‐loaded monoethanolamine (MEA) solvent regeneration process to reduce the heat duty. The regeneration characteristics with five catalysts (three SZA catalysts and two parent catalysts) of a 5 M MEA solution with an initial CO2 loading of 0.5 mol CO2/mol amine at 98°C were investigated in terms of CO2 desorption performance and compared with those of a blank test. All the catalysts were characterized using X‐ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption–desorption experiment, ammonia temperature programmed desorption, and pyridine‐adsorption infrared spectroscopy. The results indicate that the SZA catalysts exhibited superior catalytic activity to the parent catalysts. A possible catalytic mechanism for the CO2 desorption process over SZA catalyst was proposed. The results reveal that SZA1/1, which possesses the highest joint value of Brφnsted acid sites (BASs) and mesopore surface area (MSA), presented the highest catalytic performance, decreasing the heat duty by 36.9% as compared to the catalyst‐free run. The SZA1/1 catalyst shows the best catalytic performance as compared with the reported catalyst for this purpose. Moreover, the SZA catalyst has advantages of low cost, good cyclic stability, easy regeneration and has no effect on the CO2 absorption performance of MEA. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3988–4001, 2018  相似文献   

12.
The heterogeneous catalytic decomposition of ozone was investigated over unsupported manganese and cobalt oxide at room temperature. All catalysts were characterized by X-ray diffraction (XRD), N2 adsorption–desorption (Brunauer–Emmet–Teller method), H2-temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The catalytic activity test indicated that these oxides had a good activity on ozone conversion meanwhile the catalysts remained highly active over time under reaction conditions. The treated temperature of the catalyst had a significant impact on the performance of ozone abatement and the samples treated at lower temperature showed higher activity. The surface area decreased obviously when developing the calcination temperature and H2-TPR results demonstrated that much higher oxidation state of metal ions and active oxygen species were maintained on the surface under low treated temperature. XPS analysis showed that there were higher oxidation states of metal ions (Mn4+ and Co3+) and adsorbed oxygen species on the surface of catalysts treated at lower temperature, both of which play a significant role in ozone decomposition. However, the activity of manganese oxide was higher than that of cobalt oxide and the possible reason for this phenomenon was discussed.  相似文献   

13.
Petroleum coke (petcoke) is an abundant resource that can potentially be converted to catalyst support materials through activation to increase the surface area and reduce the sulphur content. In this work, potassium hydroxide (KOH) catalysed activation was employed with petcoke to produce activated carbons, which were characterised with nitrogen physisorption, X‐ray diffraction, scanning electron microscopy and temperature‐programmed reduction. With activation temperatures between 500 and 800°C, the surface area increased from 4 m2/g to between 200 and 2400 m2/g while the sulphur content was reduced from 6.6 wt% to between 1 and 0.2 wt%. Nickel catalysts (nominally 5 wt%) were prepared on the activated carbon supports using wet impregnation. The activities of these catalysts were measured for toluene hydrogenation in a plug‐flow reactor with a toluene liquid hourly space velocity of 2.4/h, a pressure of 1.38 MPa, and a H2/toluene mole ratio of 90. The catalytic activity varied between zero for nickel supported on petcoke to 98% conversion, with essentially 100% to methylcyclohexane for nickel supported on carbon activated at 750°C. Thus, activated carbon from petcoke was a suitable support for Ni‐based catalysts when used for toluene hydrogenation as a model reaction. © 2011 Canadian Society for Chemical Engineering  相似文献   

14.
Mesoporous nanocrystalline MgSiO3 with high surface area was synthesized by a hydrothermal method and employed as support in dry and steam reforming of methane. Ni/MgSiO3 catalysts were prepared by an impregnation method and characterized by different techniques. N2 adsorption analysis indicated that addition of nickel shifted the pore size distributions to smaller sizes. Temperature‐programmed reduction analysis revealed that a higher nickel loading enhanced the reducibility of the catalyst. The catalytic performance was improved with increasing the nickel content. The Ni/MgSiO3 catalyst exhibited high stability in dry reforming but methane conversion declined with time‐on‐stream in the steam reforming reaction. Temperature‐programmed oxidation profiles of spent catalysts indicated that the high amount of carbon deposited on the catalyst surface in dry and steam reforming was assigned to whisker‐type carbon.  相似文献   

15.
In this work, cerium–tungsten oxide catalysts were prepared by three methods: single step sol–gel (SG), impregnation (IM), and solid processing (SP). The catalysts were used for selective catalytic reduction (SCR) of NOx with ammonia over a wide temperature range. The results indicated that the catalysts prepared by the SP and IM methods exhibited better SCR activity than that prepared via the SG method in 175–500 °C. The excellent activity can be attributed to larger surface area, higher surface concentrations of Ce and Ce3 +, enhanced NO oxidization ability, and greater number of surface acid sites.  相似文献   

16.
A series of Cs promoted NiO catalysts have been prepared and tested for direct decomposition of N2O. These catalysts are characterized by BET surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption of N2O (TPD-N2O) and X-ray photo electron spectroscopy (XPS). The Cs promoted NiO catalysts exhibit higher activity for the decomposition of N2O compared to bulk NiO. The catalyst with Cs/Ni ratio of 0.1 showed highest activity. The enhancement in catalytic activity of the Cs promoted catalysts is attributed to the change in the electronic properties of NiO. The characterization techniques suggest weakening of Ni–O bond thereby the desorption of oxygen becomes more facile during the reaction. The Cs promoted NiO catalyst is effective at low reaction temperature and also in the presence of oxygen and steam in the feed stream. IICT Communication No: 070523.  相似文献   

17.
Medium‐temperature shift reaction (MTS, 280–340 °C) has received much attention for use in fuel processors. In this study, bifunctional Pt‐Ni/CeO2 catalysts were prepared by different Pt (0.1–0.5 %) and Ni (5–20 %) loadings, and investigated for MTS reaction. X‐ray diffraction, N2 adsorption and temperature‐programmed reduction tests were used to characterize the prepared samples. The results showed that Pt‐Ni bimetallic catalysts have higher CO conversion in comparison to Pt/CeO2 monometallic catalyst. Furthermore, the sequential synthesis method of Pt and Ni impregnation was preferred to the simultaneous one, which is due to the better Pt dispersion on catalytic surface. Steam to carbon ratio variations study showed the maximum CO conversion to be in the range of 4.5.  相似文献   

18.
赵波  王卓  叶娜  左树锋 《工业催化》2020,28(4):80-88
以CeO_2修饰多孔NaY分子筛作为载体,采用高温液相还原法制备纳米晶PdO催化剂,用于低浓度苯催化氧化反应。采用XRD、N2吸附-脱附、透射电镜-能谱(HRTEM-EDS)、H2程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)和程序升温表面反应(TPSR)等对载体和催化剂进行表征。结果表明,NaY分子筛结构稳定,比表面积651 m~2·g~(-1)和孔容0. 326 cm~3·g~(-1),纳米晶PdO能够较均匀地分散在NaY载体上,颗粒尺寸约(3~5) nm。加入一定量CeO_2后,Pd O以较小的纳米晶颗粒形式分散在CeO_2周围,活性组分与助剂协同作用促进了催化剂中晶格氧的流动性,明显改善了0. 2%Pd/NaY的氧化性能。0. 2%Pd/8%Ce/NaY表现出最佳催化活性和良好稳定性,250℃可完全催化降解1000×10~(-6)的苯,并且230℃连续反应100 h,催化剂转化率稳定在86%。  相似文献   

19.
Nickel catalysts prepared on high‐surface‐area mesoporous MgSiO3 were synthesized and applied in methanation of CO2. N2 adsorption analysis confirmed the presence of the mesoporous structure on the synthesized samples and revealed that the increase in nickel content resulted in a shift of the pore size distributions to smaller pore sizes. Temperature‐programmed reduction analysis illustrated an improvement in reducibility of the catalysts by a higher nickel content. Catalytic results indicated enhanced CO2 conversion with the increase in nickel percentage up to 15 wt %. The catalysts with higher percentage of nickel provided lower CO2 conversion and CH4 selectivity. The %15Ni/MgSiO3 catalyst exhibited high catalytic stability under optimized conditions.  相似文献   

20.
Fe-zeolite catalysts were prepared by ion-exchange and characterized by nitrogen physisorption, electron paramagnetic resonance (EPR) spectroscopy, NH3-temperature programmed desorption (TPD), H2-temperature programmed reduction (TPR) and Energy dispersive X-ray spectroscopy (EDX) methods. The effect of potassium doping on the acidic and redox properties of the Fe-zeolite catalysts were studied. The prepared catalysts showed high surface area and surface acidity. This is essential for increased alkali resistivity in comparison with conventional metal oxide supports like, e.g. TiO2 and ZrO2, towards e.g. potassium salts in flue gases from biomass fired power plants. These properties allowed both undoped and potassium doped Fe-zeolite catalysts to posses high activity during the selective catalytic reduction (SCR) of NO with NH3. The extent of deactivation of the Fe-zeolite catalysts was further compared with commercial V2O5–WO3–TiO2 catalyst (VWT) with various levels of potassium poisoning. While VWT catalysts severely deactivated at relative low potassium concentration levels the Fe-zeolite catalysts also showed superior alkali resistivity even at high potassium loadings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号