首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以H-732阳离子交换树脂为催化剂进行了酯化反应研究,合成了丁二酸单乙酯和乙酰水杨酸,通过单因素实验和正交实验优化了反应工艺。单因素实验结果表明:催化剂用量为丁二酸酐质量的20%、乙醇与丁二酸酐的摩尔比1.8∶1、反应时间2 h、反应温度90 ℃时,丁二酸单乙酯产率最高为68.76%;在丁二酸单乙酯的合成体系中加入分离出的副产物丁二酸二乙酯可以抑制副反应的发生,大大提高单酯的产率(90.79%)。正交实验结果表明:乙酸酐与水杨酸的摩尔比为3∶1,催化剂用量为水杨酸质量的14.50%,反应时间2 h、反应温度60 ℃时,乙酰水杨酸产率最高为77.57%;催化剂连续使用5次时,催化能力才有明显下降,对连续使用过5次的催化剂重新活化后催化能力无明显降低。  相似文献   

2.
The alkoxylation of camphene with 2‐methyl‐1,3‐propanediol was studied using anhydrous macroporous and strong acid cation exchange resins as catalysts. The effects of various parameters, such as catalyst type, solvent, molar ratio of reactants, reaction temperature, and reusability of catalysts, were investigated in a 250 mL stirred tank reactor to optimize the reaction conditions. The UNIFAC group contribution method was used to correct liquid nonideality, giving the thermodynamic equilibrium constant at 333–370 K. The enthalpy changes calculated by three different methods (Gaussian 03, constant, and a function of temperature) were compared. The value (?74.6 ± 3.3 kJ/mol) calculated by the last method was closer to the theoretical value (?75.73 kJ/mol) than that given by the second method (?30.2 ±1.2 kJ/mol). A Langmuir–Hinshelwood–Hougen–Watson model based on activity was used to fit experimental data and the activation energy was 29.14 kJ/mol. The optimized reaction conditions were also verified in a 5 L reaction kettle. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1925–1932, 2015  相似文献   

3.
Polypyrrole Th(IV) phosphate, an electrically conducting ‘organic‐inorganic’ cation‐exchange composite material was prepared by the incorporation of an electrically conducting polymer, i.e., polypyrrole, into the matrix of a fibrous type inorganic cation‐exchanger thorium(IV) phosphate. The composite cation‐exchanger has been of interest because of its good ion‐exchange capacity, higher chemical and thermal stability, and high selectivity for heavy metal ions. The temperature dependence of electrical conductivity of this composite system with increasing temperatures was measured on compressed pellets by using four‐in‐line‐probe dc electrical conductivity measuring instrument. The conductivity values lie in the semiconducting region, i.e., in the order of 10?6 to 10?4 S cm?1 that follow the Arrhenius equation. Nernst–Plank equation has been applied to determine some kinetic parameters such as self‐diffusion coefficient (D0), energy of activation (Ea), and entropy of activation (ΔS*) for Mg(II), Ca(II), Sr(II), Ba(II), Ni(II), Cu(II), Mn(II), and Zn(II) exchange with H+ at different temperatures on this composite material. These results are useful for predicting the ion‐exchange process occurring on the surface of this cation‐exchanger. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Treatment of wastewater containing lead and iron was examined using two different ion‐exchange resins namely Duolite ES 467 (containing amino‐phosphonic functional groups) and a chelating ion‐exchange resin (containing hydroxamic acid functional groups). Initially different sorption parameters such as contact time, pH, concentrations of sorbent, sorbate and chloride ion were studied. The sorption kinetics was observed to be fast and equilibrium could be reached within 30 min. Lead sorption efficiency increased with increase in pH whereas the opposite trend was observed with iron. The presence of chloride ions greatly reduced the Pb sorption efficiency in the case of Duolite ES 467. Column studies were carried out to recover Pb and Fe individually using Duolite ES 467 resin. The maximum uptake of Pb at pH 2 and 3 was observed to be 11.63 and 33.96 g dm?3 of resin respectively. Similarly, for Fe at pH 2 and 3 the uptake was observed to be 10.07 and 6.96 g dm?3 of resin respectively. In the presence of chloride ions, column studies were carried out using Duolite ES 467 for iron and chelating ion‐exchange resin containing hydroxamic acid functional groups for lead sorption. Hydroxamic acid resin's loading capacity remains constant for at least up to 20 cycles. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
徐祖伟  于朝生  窦烁 《化工进展》2013,32(1):65-71,96
通过对比5种大孔树脂对黄芪异黄酮的吸附和解吸特性,发现X-5大孔树脂最适用于吸附黄芪异黄酮,并进一步采用静态吸附法研究了X-5树脂对黄芪异黄酮的吸附动力学和热力学特性。动力学研究表明,准二级动力学相对于其它模型而言能够更好地描述黄芪异黄酮的吸附过程,颗粒内扩散是整个吸附过程的主要速率控制步骤;黄芪异黄酮的吸附符合Langmuir等温吸附模型。热力学研究表明,ΔG0<0即吸附是自发进行的,ΔH0和ΔS0分别为8.021 kJ/mol和62.51 J/(mol?K)说明X-5大孔树脂对黄芪异黄酮的吸附是以熵为主要驱动力的吸热 过程。  相似文献   

6.
应用732阳离子交换树脂作为催化剂合成己二酸二乙酯,探讨了不同因素对于己二酸二乙酯产率的影响。通过正交试验优化了反应条件。试验结果表明:酸醇摩尔比为1∶6,催化剂用量为酸质量分数的35%,反应时间为12 h,带水剂甲苯用量为25 mL,己二酸二乙酯产率为81.13%。  相似文献   

7.
Polystyrene cation exchange membranes were prepared by a PVC‐based semi‐interpenetrating polymer network (IPN) method. The reaction behaviors during polymerization and sulfonation in the preparation method were investigated. The prepared membranes were characterized in terms of the physical and electrochemical properties. The membranes exhibited reasonable mechanical properties (tensile strength, 13 MPa, and elongation at break, 52%) for an ion‐exchange membrane with the ratio of polystyrene–divinylbenzene (DVB)/poly(vinyl chloride) (PVC) (RSt‐DVB/PVC) of below 0.9. Fourier transform infrared/attenuated total reflectance, differential scanning calorimetry, and scanning electron microscopy studies revealed the formation of a homogeneous membrane. The resulting membrane showed membrane electrical resistance of 2.0 Ω cm2 and ion‐exchange capacity of 3.0 meq/g dry membrane. The current–voltage (I–V) curves of the membrane show that the semi‐IPN polystyrene membranes can be properly used at a high current density, and that the distribution of cation‐exchange sites in the membrane was more homogenous than that in commercial membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1488–1496, 2003  相似文献   

8.
Liquid permeation measurements of water, methanol, and 2‐propanol were carried out using a commercial cation‐exchange membrane Nafion‐117 (perfluorinated polyethylene with pendant ether‐linked side chains terminated with sulfonated groups). The experimental permeation data are treated and analyzed using the capillary model, leading to the determination of equivalent pore radius of the membrane structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
732阳离子交换树脂吸附L-组氨酸的特性   总被引:1,自引:0,他引:1  
测定25℃下732阳离子交换树脂吸附L-组氨酸的动力学曲线和吸附等温线,考察了pH值、硫酸铵浓度、L-赖氨酸和L-精氨酸对吸附的影响。结果表明,Freund lich方程可以较好地描述732阳离子交换树脂对L-组氨酸的吸附,由Freund lich方程求得其平衡吸附量为142.32 g/L;吸附率随pH值的增大而减小,适宜在小于5.4时吸附;NH4+的存在使L-组氨酸的吸附率明显下降,当NH4+浓度达到1.0 mol/L时吸附率仅为42.32%;L-赖氨酸或L-精氨酸的存在使吸附率略微减小。  相似文献   

10.
Adsorption of Cd(II), Co(II), and Ni(II) on aminopyridine modified poly(styrene‐alt‐maleic anhydride) crosslinked by 1,2‐diaminoethane as an ion exchange resin has been investigated in aqueous solution. Adsorption behavior of these metal ions on the resin was studied by varying the parameters such as pH (2–6), adsorbent dose (0–4.0 g/L), contact time (0–240 min), and metal ions concentration (20–300 mg/L). Adsorption percentage was increased by increasing each of these parameters. The isotherm models such as: Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich were used to describe adsorption equilibrium. The results showed that the best fit was achieved with the Langmuir isotherm equation, yielding maximum adsorption capacities of 81.30, 49.02, and 76.92 mg/g for Cd(II), Co(II), and Ni(II), respectively. The pseudo‐first‐order, pseudo‐second‐order, and intra‐particle diffusion kinetics equations were used for modeling of adsorption data and it was shown that pseudo‐second‐order kinetic equation could best describe the adsorption kinetics. The intra‐particle diffusion study revealed that external diffusion might be involved in this case. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41642.  相似文献   

11.
以CAT600阳离子交换树脂作为催化剂,醋酸酐既做溶剂又做乙酰化试剂,高效地进行了全乙酰基糖的合成。实验结果表明,所考察葡萄糖等8个糖类化合物在0.5 h内均能以较高的收率得到全乙酰基化的产物,产率达75%~95%。该方法具有高效、绿色、廉价、易于后处理等优点,有工业利用价值。  相似文献   

12.
The removal of single component and binary mixtures of divalent cobalt and iron from water by ion exchange with synthetic Y zeolite has been studied in batch, semi‐batch and continuous modes of operation; the initial metal solution concentration did not exceed 2 mmol dm?3. Binary Co/Na and Fe/Na ion exchange equilibrium isotherms (294 K) are presented wherein exchange site heterogeneity is evident in the case of the iron treatment. Under conditions of stoichiometric ion exchange, removal efficiencies for both cobalt and iron decrease with increasing metal concentration (0.2–2 mmol dm?3) and the values were similar for both metals. Removal of cobalt under transient conditions was found to be temperature dependent. In the fixed bed operation, break‐through behavior was sensitive to changes in both flow rate and inlet concentration. The break‐through profiles for both metals under competitive and non‐competitive conditions are presented; iron removal is lower in the presence of cobalt and vice versa. An in situ regeneration of the fully loaded zeolite by back exchange with sodium is considered and the exchange capacity of the regenerated zeolite is reported. The feasibility of employing cycles of heavy metal uptake/zeolite regeneration is addressed. © 2002 Society of Chemical Industry  相似文献   

13.
The feasibility of using bacterial cellulose as a source for environmentally compatible ion‐exchange membranes (IEM) was studied. Bacterial cellulose was modified with cation‐exchangeable acrylic acid (AAc) by UV‐graft polymerization to prepare membranes having ion‐exchange capacity (IEC) and greater structural density. Fourier transform infrared (FTIR) spectra showed that acrylic acids were successfully bound to bacterial cellulose. Morphological changes of acrylic acid‐treated bacterial cellulose were examined through scanning electron microscopy. A dense structure of the membrane increased with increasing UV‐irradiation time. Acrylic‐modified bacterial cellulose membrane showed reasonable mechanical properties, such as tensile strength of 12 MPa and elongation of 6.0%. Also the prepared membranes were comparable to the commercial membrane CMX in terms of the electrochemical properties, ie IEC of 2.5 meq g?1‐dry mem, membrane electric resistance of 3 ohm cm2, and transport number of 0.89. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
付勇  吴国光  彭奇均 《化工进展》2007,26(3):422-425
实验考察了温度、pH值、氯化铵和氯化钠浓度对D001型阳离子交换树脂吸附L-苏氨酸的影响,并测定了25 ℃时阳离子交换树脂吸附L-苏氨酸的吸附等温线.结果表明:阳离子交换树脂吸附L-苏氨酸的吸附率随温度的升高呈略下降的趋势,是个放热过程;pH值增大,吸附率下降;溶液中氯化铵或氯化钠浓度增大,吸附率迅速下降,且当氯化铵或氯化钠物质的量浓度达到1.0 mol·L-1时,L-苏氨酸在树脂上吸附量很小;25 ℃时,最大饱和吸附量约为70g·kg-1(树脂).  相似文献   

15.
Fundamental studies regarding the synthesis of a porous copolymer synthesized from 1‐vinyl‐2‐pyrrolidone and divinylbenzene in the presence of different diluents were carried out. A series of porous copolymer resins was synthesized by suspension polymerization using the following diluents: dimethylphthalate (DMT), diethylphthalate, dibutylphthalate, and bis‐2‐ethyl hexylphthalate [dioctylphthalate (DOT)]. It was observed that the porosity of resin increases with increase in length of the methylene group in the phthalate ester of DMT to DOT. In another series of experiments the amount of solvent was increased from 30 to 60% while the crosslinkage was kept constant at 30% and the diluent used was DOT. It was observed that the porosity of resins increased as the fraction of solvent increased. However, surprisingly, the Na+ capacity did not show any appreciable change by varying the amount or nature of diluent, remaining approximately 4 meq/g. The resin remained mechanically strong despite higher porosity. The mechanical strength also did not show any significant change by varying the diluent or amount of diluent. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3917–3920, 2004  相似文献   

16.
研究了717强碱阴离子交换树脂对苯酚的吸附性能。结果表明,在pH=10~13时,吸附能力最好。等温吸附符合Freundlich和Langmuir经验式。在293~313 K条件下,苯酚吸附量为220~260 mg/g的吸附焓变为-13.69~-12.02 kJ/mol,吸附自由能变为-7.02~-7.21 kJ/mol,吸附熵变为-22.76~-15.37 J/(K.mol)。吸附动力学符合Lagergren准二级速率方程,吸附速率常数为8.5×10-4~2.74×10-3g/(mg.min),吸附活化能为44.1 kJ/mol。303 K下其静态累积饱和吸附容量为399.8 mg/g(4.253 mmol/g)。用0.05 mol/L HCl溶液能定量洗脱苯酚,洗脱率达99%。  相似文献   

17.
离子交换树脂去除水中硝酸盐的研究   总被引:5,自引:4,他引:5  
对比研究了国内生产的5种阴离子交换树脂(D201、D301、D407、330、717)对水中NO3-的吸附解吸情况。动态吸附饱和曲线表明,717和D407对NO3-的吸附较好,饱和吸附量分别为82.8mg/mL和54.8mg/mL,其他3种树脂效果很差;717和D407对NO3-的吸附速率也相对较快。5种树脂吸附等温线与经验公式拟合的线性相关性显著,其中330树脂符合BET经验公式,另外4种树脂符合Langmuir经验公式;再生试验表明5种树脂再生率均能达到85%以上。综合研究结果认为,强碱性苯乙烯系阴离子交换树脂717和螯合树脂D407对NO3-具有较好的吸附解吸性能,可作为去除硝酸盐的选用树脂。  相似文献   

18.
在调查某水厂水源水质及传统工艺处理效能的基础上,对比探讨了粉末活性炭和磁性离子交换树脂分别以预吸附、预吸附-混凝、混凝沉淀-吸附等不同工艺对水源水中溶解性有机物的去除效能,确定了最佳工艺。该水源存在季节性有机物污染,亲水性有机质占比80%。水厂传统工艺对有机物的去除能力约20%~30%。与其他工艺相比,树脂预吸附-混凝对有机物的去除功效最好,DOC和UV254的去除率分别达到41.48%和80.0%,与单独强化混凝相比,该工艺可将DOC和UV254的去除效率分别提高17.7和35.49个百分点,且可减少86.67%的混凝剂投加量。Langmuir等温线模型和拟二级动力学方程可定量描述树脂吸附有机物平衡和动力学。磁性离子交换树脂预吸附可作为该水厂强化去除水源中溶解性有机物的可靠技术。  相似文献   

19.
选择732型阳离子交换树脂作为钠化剂,通过微波加热和水浴加热2种方式,制备出理想的钠基蒙脱石悬浮液,并分别通过正交实验确定了2种加热方式各自的最佳实验条件.最终得出微波钠化蒙脱石收率为84.88%,水浴钠化蒙脱石收率为73.25%.钠化效果较为理想,基本达到预期目的.  相似文献   

20.
Ion‐exchange textiles (IETs) suitable for use in continuous electrodeionization (CEDI) stacks were prepared using the ultraviolet (UV)‐induced grafting of acrylic acid and sodium styrene sulfonate for cation‐exchange textiles, or 2‐hydroxyethyl methacrylate and vinylbenzyl trimethyl ammonium chloride for anion‐exchange textiles, onto nonwoven polypropylene fabric using benzophenone as photoinitiator. Although the ion‐exchange capacity (2.2 meq g?1) of the prepared strong acid cation‐exchange textile was lower than that of IRN77 strong acid cation‐exchange resin (4.2 meq g?1), the overall rate constant of IET was very high due to its low crosslinking and high specific surface area. There was no significant difference between the two different media in terms of the Co(II) removal rate. Furthermore, the current efficiency for IETs was higher than that of IRN77 cation‐exchange resin during a CEDI operation, with efficiencies of 60% and 20%, respectively. The IET also showed the faster exchange kinetics. Therefore, IETs prepared in this study proved to have desirable ion‐conducting characteristics within the CEDI systems. Also this study revealed that the primary removal mechanism in CEDI is the transport of ions through a medium and not the ionic capacity of a medium. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号