首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
CO2 capture via an oxy‐fuel route through the U‐shaped (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ (PLNCG) hollow fiber membrane with 100% CH4 conversion and 100% CO2 selectivity for 450 h has been explored for the first time. X‐ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy characterizations of the spent hollow fiber membrane have also been investigated. All these results indicate that PLNCG hollow fiber membrane shows excellent reaction performance and good stability under oxy‐fuel reaction conditions, which will be a potential rounte for reducing CO2 emissions worldwide. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3856–3862, 2013  相似文献   

3.
4.
5.
The efficiency of columns for fluid separation can be increased by the application of sandwich packings. During the operation, different load‐dependent regimes with peculiar separation performance arise. In order to account for the effects of the individual flow regimes in a single model, both separation performance measurements and tomographic imaging are applied. A rate‐based model is presented, which takes the heterogeneous regimes in sandwich packings into account by means of appropriate correlations. The model is tested with experimental data for CO2 absorption.  相似文献   

6.
CO2‐consuming reactions, in particular carboxylations, play important roles in technical processes and in nature. Their kinetic behavior and the reaction mechanisms of carboxylating enzymes are difficult to study because CO2 is inconvenient to handle as a gas, exists in equilibrium with bicarbonate in aqueous solution, and typically yields products that show no significant spectroscopic differences from the reactants in the UV/Vis range. Here we demonstrate the utility of 3‐nitrophenylacetic acid and related compounds (caged CO2) in conjunction with infrared spectroscopy as widely applicable tools for the investigation of such reactions, permitting convenient measurement of the kinetics of CO2 consumption. The use of isotopically labeled caged CO2 provides a tool for the assignment of infrared absorption bands, thus aiding insight into reaction intermediates and mechanisms.  相似文献   

7.
We report second and third virial coefficients for the system CO2‐H2O, calculated via cluster integrals using quantitative molecular models taken from the literature. Considered models include (1) fits to highly accurate ab initio calculations of the potential energy surfaces, and (2) semiempirical Gaussian Charge Polarizable Models (GCPM). Three‐body effects are found to be essential for obtaining quantitative results. Good agreement with experiment is obtained for the pure‐component coefficients, and for the cross second virial coefficient. For the two cross third virial coefficients, the few experimental data available do not agree well with the calculations; it is not clear whether this is due to problems with the data or deficiencies in the three‐body potentials. The uncertain state of the experimental data, and the relative mutual consistency of values computed from ab initio and GCPM models, suggest that calculated mixture third virial coefficients could be more accurate than values from experiment. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3029–3037, 2015  相似文献   

8.
Poly‐vinyl‐alcohol (PVA) porous structures have been prepared using a supercritical phase inversion process in which supercritical carbon dioxide (SC‐CO2) acts as the nonsolvent. First, we tested the versatility of the SC‐CO2 phase inversion process, forming PVA/dimethylsulfoxide (DMSO) solutions with polymer concentrations ranging from 1 to 35% (w/w) and changing the process parameters. We worked at temperatures from 35 to 55°C and pressures from 100 to 200 bar obtaining different membranes morphologies: dense films, membranes with coexisting morphologies, and microparticles. However, we did not produce symmetric or asymmetric porous membranes. To obtain this result, we used casting solutions formed by adding acetone to DMSO with the aim of modifying the affinity between SC‐CO2 and the liquid solvent. In this series of experiments, we obtained asymmetric membranes with skin layer thicknesses lower than 10 μm. The results obtained in this work have been explained considering that the membranes formation mechanism is related to the kinetics of the process; i.e. the affinity between the solvent (mixture of solvents) and SC‐CO2. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
10.
11.
The equilibrium solubility of CO2 into aqueous solution of sterically hindered N‐methyl‐2‐ethanolamine or methyl amino ethanol (MAE) was investigated in the temperature range of 303.1–323.1 K and total CO2 pressure in the range of 1–350 kPa. The N‐methyl‐2‐ethanolamine aqueous solutions studied were 0.968, 1.574, 2.240 and 3.125 mol kg?1 of solvent. © 2011 Canadian Society for Chemical Engineering  相似文献   

12.
A new membrane material having two kinds of CO2 carriers was obtained. Composite membranes were prepared with the material and support membranes. The facilitated transport of CO2 through these membranes was performed with pure CH4 and CO2 as well as CH4/CO2 mixtures containing 50 vol % CO2. The results show that the membranes possess better CO2 permeance than that of other fixed carrier membranes reported in the literature. In the measurements with pure gases, at 26°C, 0.013 atm of CO2 pressure, the membrane with polysulfone support displays a CO2 permeance of 7.93 × 10?4 cm3 /cm2 s cmHg and CO2/CH4 ideal selectivity of 212.1. In the measurements with mixed gases, at 26°C, 0.016 atm of CO2 partial pressure, the membrane displays a CO2 permeance of 1.69 × 10?4 cm3 /cm2 s cmHg and CO2/CH4 selectivity of 48.1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2222–2226, 2002  相似文献   

13.
The effect of CO2‐induced crystallization on the mechanical properties, in particular the yield and the ultimate stresses, of polyolefins is studied. PP and SEBS copolymer blends are used as examples and foamed after sorption of CO2 at temperatures below Tm. CO2 sorption thickens the crystalline lamellae and consequently increases Tm from 160 to 178 °C for both pure PP and PP/SEBS blend systems. Foams with an average cell size smaller than 250 nm retain the ultimate stress at the level of the polymer before foaming, even without the effect of CO2‐induced crystallization. Including CO2‐induced crystallization, the yield and the ultimate stresses of the foam can be improved by 30 and 50% over solid PP and by 22 and 40%, for solid PP/SEBS blends, respectively.

  相似文献   


14.
The new group binary interaction parameters of UNIFAC model (anm and amn) between CO2 and 22 ionic liquid (IL) groups were obtained by means of correlating the solubility data of CO2 in pure ILs at different temperatures (>273.2 K). We measured the CO2 solubility at low temperatures down to 243.2 K in pure ILs, i.e., [OMIM]+[BF4]? and [OMIM]+[Tf2N]?, and their equimolar amount of mixture, in order to fill the blank of solubility data at low temperatures and also to justify the applicability of UNIFAC model over a wider temperature range. It was verified that UNIFAC model can be used for predicting the CO2 solubility in pure ILs and in the binary mixture of ILs both at high (>273.2 K) and low temperatures (<273.2 K) effectively, as well as identifying the new structure–property relation. This is the first work to extend the UNIFAC model to IL‐CO2 systems. © 2013 American Institute of Chemical Engineers AIChE J 60: 716–729, 2014  相似文献   

15.
In this work, the equilibrium solubility of CO2 in a 1‐diethylamino‐2‐propanol (1DEA2P) solution was determined as a function of 1DEA2P concentration (over the range of 1–2 M), temperature (in the range of 298–333 K), and CO2 partial pressure (in the range of 8–101 kPa). These experimental results were used to fit the present correlation for K2 (Kent‐Eisenberg model, Austgen model, and Li‐Shen model). It was found that all of the models could represent the CO2 equilibrium solubility in 1DEA2P solution with ADDs for Kent‐Eisenberg model, Austgen model, and Li‐Shen model of 6.3, 7.3, and 12.2%, respectively. A new K2 correlation model, the Liu‐Helei model, was also developed to predict the CO2 equilibrium solubility in 1DEA2P solution with an excellent ADD of 3.4%. In addition, the heat of absorption of CO2 in 1DEA2P solution estimated by using the Gibbs‐Helmholtz equation was found to be ?45.7 ± 3.7 kJ/mol. Information and guidelines about effectively using data for screened solvents is also provided based on the three absorption parameters: CO2 equilibrium solubility, second order reaction constant (k2), and CO2 absorption heat. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4465–4475, 2017  相似文献   

16.
An overview of technologies for fossil fuel power plants with drastically reduced CO2 emissions is given. Post combustion capture, Pre combustion capture, and Oxyfuel technology are introduced and compared. Current research results indicate that Post combustion capture may lead to slightly higher losses in power plant efficiency than the two other technologies. However, retrofitting of existing plants with Oxyfuel technology is complex and costly, and retrofitting of Pre combustion capture is not possible. On the other hand, Post combustion capture is suited for retrofitting. Based on the mature technology of reactive absorption, it can be implemented on a large scale in the near future. Therefore, Post combustion capture using reactive absorption is discussed here in some detail.  相似文献   

17.
18.
The simultaneous adsorption of SO2, NO, and CO2 on K2CO3‐modified γ‐alumina under different operating conditions was studied in a fixed‐bed reactor. The experimental results showed that the influence of a temperature increase on the simultaneous adsorption of the three gases was complex and different from the effects seen when both chemical adsorption and competitive adsorption existed. An increase in O2 concentration and small amounts of water could enhance the adsorption of SO2 and NO while the adsorption of CO2 was not influenced. The breakthrough curves of the simultaneous adsorption experiments suggested that the investigated adsorbent may be a good candidate for the simultaneous adsorption of SO2, NO, and part of the CO2 while the adsorption capacity for CO2 still needs to be enhanced.  相似文献   

19.
20.
The reaction between a biomass (cellulose, sucrose, glucose, starch, cotton, or Japanese paper) and NaOH in the presence of water vapor produced pure hydrogen without CO and CO2 at temperatures in the range 473–623K. The addition of Ni/Al2O3 or Rh/Al2O3 catalyst to cellulose enhanced the production of hydrogen at <573 K. The reaction between cellulose and NaOH can be written as: C6H10O5 + 12NaOH + H2O = 6Na2CO3 + 12H2. The reactivities of alkali metal hydroxides were: KOH > NaOH ? LiOH. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号