首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 182 毫秒
1.
Vertical distributions of local void fraction and bubble size in alr–water dispersion system were measured with a dual conductivity probe in a fully baffled dished base stirred vessel with the diameter T of 0.48 m, holding 0.134 m3 liquid. The impel er combination with a six parabolic blade disk turbine below two down-pumping hy-drofoil propel ers, identified as PDT+2CBY, was used in this study. The effects of the impel er diameter D, rang-ing from 0.30T to 0.40T (corresponding to D/T from 0.30 to 0.40), on the local void fraction and bubble size were investigated by both experimental and CFD simulation methods. At low superficial gas velocity VS of 0.0077 m·s?1, there is no obvious difference in the local void fraction distribution for al systems with different D/T. However, at high superficial gas velocity, the system with a D/T of 0.30 leads to higher local void fraction than systems with other D/T. There is no significant variation in the axial distribution of the Sauter mean bubble size for al the systems with different D/T at the same gas superficial velocity. CFD simulation based on the two-fluid model along with the population balance model (PBM) was used to investigate the effect of the impel er diameter on the gas–liquid flows. The local void fraction predicted by the numerical simulation approach was in reasonable agreement with the experimental data.  相似文献   

2.
The hydrodynamics is still not fully understood in the three-phase stirred tank equipped with multi-impeller due to the intensive interaction between phases. In this work, the solid critical suspension speed(NJSG), relative power demand(RPD) and overall gas holdup(ε_G) were measured in an air–water–glass beads stirred tank equipped with multi-impeller, which consists of a parabolic blade disk turbine below two down-pumping hydrofoils. Results show that either the NJSGor the specific power consumption increases when increasing the volumetric solid concentration or superficial gas velocity. RPD changes less than 10% when solid volumetric concentration ranges from 0 to 15%. ε_G decreases with the increase of solid concentration, and increases with the increase of both superficial gas velocity and the total specific power consumption. The quantitative correlations of NJSG,RPD and εGwere regressed as the function of superficial gas velocity, specific power consumption, Froude number and gas flow number, in order to provide the reference in the design of such three-phase stirred tank with similar multi-impellers.  相似文献   

3.
In this paper, the power consumption, the vertical local void fraction and the local gas–liquid interfacial area are investigated in the aerated stirred tank reactors(STRs) equipped with a rigid-flexible impeller. Meanwhile, the regressive correlation based on power consumption and interfacial area is proposed. Then a novel homogenization energy(HE = RSDPtm) expression based on power consumption and local interfacial area is redefined and used to indicate the mixing efficiency. The optimal operating mode is selected based on the change of the HE value. This paper can provide research ideas for structural optimization of stirred reactors.  相似文献   

4.
The effects of gas temperature fluctuations on soot formation and oxidation reactions are investigated numerically in a reacting flow. The instantaneous variations of soot mass fraction with time are obtained under the time-averaged gas temperature of 1500-1700 K. The simulation results show that the gas temperature fluctuation has obvious influence on the instantaneous processes of soot formation and oxidation. Within the present range of gas temperature, the gas temperature fluctuation results in generally lower soot mass fraction comparing to that without gas temperature fluctuation. The increase in the fluctuation amplitude of gas temperature leads to decrease in time-averaged soot mass fraction and increase in time-averaged soot particle number density.  相似文献   

5.
Using a five point conductivity technique local values of bubble size,bubble velocity and gas fractionhave been experimentally determined in a 288 mmID and 4.3 m high bubble column as a function of axial andradial position for the air/water and CO_2/N_2/aqueous MDEA systems.The experimental results are comparedwith predictions from a fundamental two-fluid model.The implementation of a non-steady lateral drag term inthe two-fluid model has been shown.In addition to improving the physical realism of the model,it is found togive slight improvements in the predictions of the distributions of local bubble size.Predictions of bubble size arefound in reasonable agreement with experimental values in the heterogeous flow regime,whereas they are stil1found to be unreliable at low gas velocities.Local void predictions are found in reasonable agreement with experi-mental values,but deviations occur in the homogeneous flow regime towards the wall.This is attributed to defi-ciencies in the simplified bubble size mode  相似文献   

6.
In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall.  相似文献   

7.
Interfacial Shear Stress of Stratified Flow in a Horizontal Pipe   总被引:2,自引:2,他引:0       下载免费PDF全文
Experimented data are presented for the void fraction aud the shear stresses of stratified gas-liquid flow in a pipe, A new technique was used to measure the interface shear strew. The interfacial shear stress was determined by using two methods: a momentum balance of gas and an extrapolation of the Reynolds shear stress prone at the gas-liquld interface. A new formula ,relatiog to the interfacial friction factor with the void fraction and superficiol gas Rcynold number, was dewloped to predict the interface shear stress. The predicted values are in good agreement with experimental data.  相似文献   

8.
A finite horizon predictive control algorithm,which applies a saturated feedback control law as its local control law,is presented for nonlinear systems with time-delay subject to input constraints.In the algorithm,N free control moves,a saturated local control law and the terminal weighting matrices are solved by a minimization problem based on linear matrix inequality(LMI) constraints online.Compared with the algorithm with a nonsaturated local law,the presented algorithm improves the performances of the closed-loop systems such as feasibility and optimality.This model predictive control(MPC) algorithm is applied to an industrial continuous stirred tank reactor(CSTR) with explicit input constraint.The simulation results demonstrate that the presented algorithm is effective.  相似文献   

9.
The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from 0.30T to 0.40T (T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand (RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VS of 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the systemwith D/T=0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model (PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.  相似文献   

10.
The turbulence structure in the stirred tank with a deep hollow blade (semi-ellispe) disc turbine (HEDT) was investigated by using time-resolved particle image velocimetry (TRPIV) and traditional PIV. In the stirred tank, the turbulence generated by blade passage includes the periodic components and the random turbulent ones. Traditional PIV with angle-resolved measurement and TRPIV with wavelet analysis were both used to obtain the random turbulent kinetic energy as a comparison. The wavelet analysis method was successfully used in this work to separate the random turbulent kinetic energy. The distributions of the periodic kinetic energy and the random turbulent kinetic energy were obtained. In the impeller region, the averaged random turbulent kinetic energy was about 2.6 times of the averaged periodic one. The kinetic energies at different wavelet scales from a6 to d1 were also calculated and compared. TRPIV was used to record the sequence of instantaneous velocity in the impeller stream. The evolution of the impeller stream was observed clearly and the sequence of the vorticity field was also obtained for the identification of vortices. The slope of the energy spectrum was approximately &;#61485;5/3 in high frequency representing the existence of inertial subrange and some isotropic properties in stirred tank. From the power spectral density (PSD), one peak existed evidently, which was located at f0 (blade passage frequency) generated by the blade passage.  相似文献   

11.
Vertical distributions of local void fraction, bubble size and gas–liquid interfacial area in air–water dispersions at 24 and 81 °C have been measured with a dual electric conductivity probe in a fully baffled dished base stirred vessel of 0.48 m diameter holding 0.145 m3 liquid. The agitator was a hollow blade dispersing turbine below two up-pumping hydrofoils. The vertical distribution of the void fraction in the hot conditions is similar to that at ambient temperature though the void fraction is significantly lower in the hot system. The vertical distributions of bubble size show maxima with large bubbles above the bottom impeller, near the top impeller and close to the free surface. With given operating conditions, the overall Sauter means bubble size in the hot systems appears to be about 21% greater than when cold. Estimates of the local interfacial area show a maximum just above the level of the top impeller.  相似文献   

12.
多层桨搅拌槽内气-液两相局部气含率研究   总被引:1,自引:1,他引:0  
在直径0.48 m的椭圆底搅拌槽中,研究了以半椭圆管盘式涡轮(HEDT)为底桨、上两层为四叶翼型轴流桨下压操作(WHD)的组合桨(HEDT+2WHD)在搅拌槽内沿径向和轴向的局部气含率分布及不同表观气速对局部气含率的影响.局部气含率沿轴向分布比较均匀,仅在底桨附近有一个极大值,其它位置局部气含率差异较小.随着表观气速增...  相似文献   

13.
Vertical void fraction distributions in cold gassed, hot sparged and boiling systems using different agitators with multiple modern hollow blade and up-pumping wide-blade hydrofoil impellers are reported. The void fraction in boiling systems is dramatically different from that in cold gassed or hot sparged systems whether in terms of value or distribution. Under the same gas phase output conditions, the void fraction is much smaller in boiling systems than in cold gassed or hot sparging systems. Hot sparged systems have similar vertical void fraction distributions, with maxima in similar locations but with smaller void fractions overall, like those of cold gassed systems. The results are of particular relevance to the design and operation of reactors with hot sparging or boiling liquids.  相似文献   

14.
多层桨搅拌槽内非常温体系局部气含率分布   总被引:1,自引:0,他引:1       下载免费PDF全文
引 言局部气含率是气 -液分散的重要特征参数 ,它广泛应用于反映器的分析、选择及设计 .局部气含率与槽内的流型密切相关 ,它能够反映槽内局部的分散及传质特性 ,因此受到研究者的广泛关注[1] .由于受测试手段的限制 ,仅有部分学者对常温下单层桨通气搅拌槽进行了研究[2~ 6] ,而对于工业中广泛应用的多层桨搅拌槽则研究甚少 .许多工业过程是在较高的温度下进行的 ,而已有的研究几乎都是在常温下进行 ,忽视了液体的温度对气 -液两相体系流体力学性能的影响 .常温下的气 -液分散体系 (气体 -常温液体 )主要常见于耗氧性生物发酵、水处理等工…  相似文献   

15.
液—固相釜式搅拌反应器的放大研究   总被引:3,自引:1,他引:3  
为研究液-固相非均相反应,依据几何相似原则,建立了3级带搅拌的釜式冷模设备。研究了固体粒子在液体中的流动与分散情况;搅拌转数、挡板的设置及叶轮在釜中的插入深度对固体分散的影响。对数据关联得到了放大依据,在杀螟松生产中,进行了放大验证,取得了较好的效果  相似文献   

16.
多层桨搅拌槽内的微观混合特性   总被引:2,自引:0,他引:2  
在直径0.476 m的多层桨搅拌槽内,采用平行竞争反应工作体系,就不同的多层桨型组合、进料时间、搅拌转速及进料位置对产物分布的影响规律进行了系统的实验研究,并采用涡旋卷吸模型就加料位置等操作条件对产物分布的影响进行了模拟计算,模拟值与实验值吻合. 结果表明,对于多层桨搅拌体系,在液面处加料时产物分布主要由上层桨的桨型决定,底层桨的排出流区加料时主要由底层桨的桨型及功率决定. 卷吸模型能够较好地描述搅拌槽内的微观混合过程.  相似文献   

17.
针对橡胶粉与基质沥青混合过程中出现的漂浮、沉底、粘壁及挂料现象,建立了橡胶沥青搅拌罐的几何模型,基于计算流体力学软件对罐内混合过程进行非定常固液两相流数值模拟,分析了影响混合均匀性的因素,如桨叶直径、桨叶位置、挡板及搅拌速度等. 结果表明,尺寸适宜的桨叶直径与合适的桨叶位置有利于形成循环的轴向流,并减少定常流现象,安装挡板有效减少了切向流,搅拌器转速不影响内部流场的基本形态,但适宜的搅拌转速提高了混合均匀性. 混合均匀度与模拟结果印证,且当搅拌器直径800 mm、桨叶距离罐底680 mm、桨叶宽100 mm、搅拌速度280 r/min时,优化后橡胶粉的分布较均匀,混合均匀度为0.24,处于完全离底悬浮状态,模拟结果与实验结果较吻合.  相似文献   

18.
Hydrodynamic parameters such as power consumption, gas holdup, critical impeller speed for solid suspension and mixing time were measured in slurry stirred tank reactors with multiple impellers. The experiments were mainly conducted in a stirred tank of 0.2mi.d. with baffles. It contained two four-pitched blade downflow turbines for gas dispersion and one Pfaudler type impeller for solid suspension. As a part of scaling studies, additional experiments were also carried out in a larger stirred tank reactor (0,8m i.d.) geometrically similar to the smaller one. Glass beads and polymeric particles were used as a solid phase. Solid concentration was in the range of 0-20% (K/K). Tap water and methanol were used as a liquid phase

The power consumption decreased due to an introduction of gas and the presence of solids caused a decrease in the extent of reduction in power consumption. A correlation for power consumption in aerated slurry systems was proposed, It was found that the presence of solids is responsible for a decrease in gas holdup. A new correlation for gas holdup in gas-liquid-solid three-phase stirred tank reactors was developed. It fit the present experimental data reasonably. The critical impeller speed for solid suspensions increased with increasing gas flow rate. However, its increase was rather smaller as compared with the predictions of the correlations available in the literature. We proposed a correlation of the critical impeller speed for solid suspension in the presence of gas. The mixing time complicatedly increased or decreased depending on gas flow rate, impeller speed, solids type and concentration.  相似文献   

19.
在直径为0.476m的椭圆底圆柱形搅拌槽内,以水/航空煤油及水/环己烷为实验体系,研究了Rushton涡轮式搅拌桨(RT-6)、六半椭圆管涡轮式搅拌桨(HEDT)、折叶轴流式搅拌桨及翼形轴流式搅拌桨(CBY)的6种不同组合桨的液-液分散特性,用取样法测定了分散相体积分数的轴向分布及体系澄清时间。结果表明,组合桨中的底桨在液-液分散中发挥了主要作用。单位体积输入功率相同时,底桨为CBY的组合桨进行液-液分散后,液滴的平均滴径最小,体系澄清时间较长;底桨为HEDT的组合桨的分散效果次之;底桨为RT-6的组合桨因滴径分布较宽,虽然平均滴径最大,但澄清时间也较长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号