首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ulbricht R  Kurstjens R  Bonn M 《Nano letters》2012,12(7):3821-3827
Free-standing semiconductor nanowires on bulk substrates are increasingly being explored as building blocks for novel optoelectronic devices such as tandem solar cells. Although carrier transport properties, such as mobility and trap densities, are essential for such applications, it has remained challenging to quantify these properties. Here, we report on a method that permits the direct, contact-free quantification of nanowire carrier diffusivity and trap densities in thin (~25 nm wide) silicon nanowires-without any additional processing steps such as transfer of wires onto a substrate. The approach relies on the very different terahertz (THz) conductivity response of photoinjected carriers within the silicon nanowires from those in the silicon substrate. This allows quantifying both the picosecond dynamics and the efficiency of charge carrier transport from the silicon nanowires into the silicon substrate. Varying the excitation density allows for quantification of nanowire trap densities: for sufficiently low excitation fluences the diffusion process stalls because the majority of charge carriers become trapped at nanowire surface defects. Using a model that includes these effects, we determine both the diffusion constant and the nanowire trap density. The trap density is found to be orders of magnitude larger than the charge carrier density that would be generated by AM1.5 sunlight.  相似文献   

2.
The internal electronic structures of single semiconductor nanowires can be resolved using photomodulated Rayleigh scattering spectroscopy. The Rayleigh scattering from semiconductor nanowires is strongly polarization sensitive which allows a nearly background-free method for detecting only the light that is scattered from a single nanowire. While the Rayleigh scattering efficiency from a semiconductor nanowire depends on the dielectric contrast, it is relatively featureless as a function of energy. However, if the nanowire is photomodulated using a second pump laser beam, the internal electronic structure can be resolved with extremely high signal-to-noise and spectral resolution. The photomodulated Rayleigh scattering spectra can be understood theoretically as a first derivative of the scattering efficiency that results from a modulation of the band gap and depends sensitively on the nanowire diameter. Fits to spectral lineshapes provide both the band structure and the diameter of individual GaAs and InP nanowires under investigation.  相似文献   

3.
Semiconductor nanowires have attracted considerable recent interest due to their unique properties, including their highly anisotropic geometry, large surface-to-volume ratio, and carrier and photon confinement. Currently, tremendous efforts are devoted to the rational synthesis of advanced nanowire heterostructures. Yet, if functional devices are to be made from these materials, precise control over their composition, structure, morphology, and dopant concentration must be achieved. Their fundamental properties must also be carefully investigated since the presence of a large surface and interfacial area in nanowires can profoundly alter their performance. In this article, the progress, promise, and challenges in the area of nanowire heterostructured materials are reviewed, with particular emphasis on the effect of different types of heterointerfaces on device properties.  相似文献   

4.
Khudiyev T  Ozgur E  Yaman M  Bayindir M 《Nano letters》2011,11(11):4661-4665
We demonstrated two complementary size-dependent structural coloring mechanisms, interference and scattering, in indefinitely long core-shell nanowire arrays. The unusual nanostructures are comprised of an amorphous semiconducting core and a polymer shell layer with disparate refractive indices but with similar thermomechanical properties. Core-shell nanowires are mass produced from a macroscopic semiconductor rod by using a new top-to-bottom fabrication approach based on thermal size reduction. Nanostructures with diameters from 30 to 200 nm result in coloration that spans the whole visible spectrum via resonant Mie scattering. Nanoshell coloration based on thin film interference is proposed as a structural coloration mechanism which becomes dominant for nanowires having 700-1200 nm diameter. Controlled color generation in any part of visible and infrared spectral regions can be achieved by the simple scaling down procedure. Spectral color generation in mass-produced uniform core-shell nanowire arrays paves the way for applications such as spectral authentication at nanoscale, light-scattering ingredients in paints and cosmetics, large-area devices, and infrared shielding.  相似文献   

5.
Kim JH  Kim SS  Yoon CS 《Nanotechnology》2008,19(46):465601
Silicon oxide nanowires were decorated with magnetically hard 3-5?nm-sized CoPt nanoparticles using a simple physical deposition system without any pretreatment of the nanowire surface. High curvature of the nanowire surface together with the weak metal-substrate interaction helped to maintain discrete particle morphology with spherical shapes during deposition. The weak interaction also allowed the preferential nucleation of the deposited film on the pre-existing particles so that the film deposition can be repeated in order to increase the particle size without significantly altering the particle morphology. We expect that this method can be easily extended to create other metal nanoparticle-decorated nanowires.  相似文献   

6.
Nanowires with inhomogeneous heterostructures such as polytypes and periodic twin boundaries are interesting due to their potential use as components for optical,electrical,and thermophysical applications.Additionally,the incorporation of metal impurities in semiconductor nanowires could substantially alter their electronic and optical properties.In this highlight article,we review our recent progress and understanding in the deliberate induction of imperfections,in terms of both twin boundaries and additional impurities in germanium nanowires for new/enhanced functionalities.The role of catalysts and catalyst-nanowire interfaces for the growth of engineered nanowires via a three-phase paradigm is explored.Three-phase bottom-up growth is a feasible way to incorporate and engineer imperfections such as crystal defects and impurities in semiconductor nanowires via catalyst and/or interfacial manipulation."Epitaxial defect transfer"process and catalyst-nanowire interfacial engineering are employed to induce twin defects parallel and perpendicular to the nanowire growth axis.By inducing and manipulating twin boundaries in the metal catalysts,twin formation and density are controlled in Ge nanowires.The formation of Ge polytypes is also observed in nanowires for the growth of highly dense lateral twin boundaries.Additionally,metal impurity in the form of Sn is injected and engineered via third-party metal catalysts resulting in above-equilibrium incorporation of Sn adatoms in Ge nanowires.Sn impurities are precipitated into Ge bi-layers during Ge nanowire growth,where the impurity Sn atoms become trapped with the deposition of successive layers,thus giving an extraordinary Sn content (>6 at.%) in Ge nanowires.A larger amount of Sn impingement (>9 at.%) is further encouraged by utilizing the eutectic solubility of Sn in Ge along with impurity trapping.  相似文献   

7.
Barth S  Boland JJ  Holmes JD 《Nano letters》2011,11(4):1550-1555
Metal-seeded growth of one-dimensional (1D) semiconductor nanostructures is still a very active field of research, despite the huge progress which has been made in understanding this fundamental phenomenon. Liquid growth promoters allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, and operating pressure. However the transfer of crystallographic information from a catalytic nanoparticle seed to a growing nanowire has not been described in the literature. Here we define the theoretical requirements for transferring defects from nanoparticle seeds to growing semiconductor nanowires and describe why Ag nanoparticles are ideal candidates for this purpose. We detail in this paper the influence of solid Ag growth seeds on the crystal quality of Ge nanowires, synthesized using a supercritical fluid growth process. Significantly, under certain reaction conditions {111} stacking faults in the Ag seeds can be directly transferred to a high percentage of <112>-oriented Ge nanowires, in the form of radial twins in the semiconductor crystals. Defect transfer from nanoparticles to nanowires could open up the possibility of engineering 1D nanostructures with new and tunable physical properties and morphologies.  相似文献   

8.
Crystal phase control in single III-V semiconductor nanowires has emerged recently as an important challenge and possible complement to conventional bandgap engineering in single material systems. Here we investigate a supply interruption method for precise crystal phase control in single nanowires. The nanowires are grown by metalorganic vapor phase epitaxy using gold particles as seeds and are analyzed by transmission electron microscopy. It is observed that wurtzite segments with controlled length and position can be inserted on demand into a pure InAs zincblende nanowire. The interface between wurtzite and zincblende segments can be made atomically sharp and the segments can be made only a few bilayers in thickness. The growth mechanisms, applicability and limitations of the technique are presented and discussed.  相似文献   

9.
Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad-band light emitting diodes (LEDs) and high-efficiency solar cells. In this review, we will summarize the recent progress on composition graded semiconductor alloy nanowires with bandgaps graded in a wide range. Depending on different growth methods and material systems, two typical nanowire composition grading approaches will be presented in detail, including composition graded alloy nanowires along a single substrate and those along single nanowires. Furthermore, selected examples of applications of these composition graded semiconductor nanowires will be presented and discussed, including tunable nanolasers, multi-terminal on-nanowire photodetectors, full-spectrum solar cells, and white-light LEDs. Finally, we will make some concluding remarks with future perspectives including opportunities and challenges in this research area.  相似文献   

10.
There has been growing interest in the past decade in one-dimensional (1D) nanostructures, such as nanowires, nanotubes or nanorods, owing to their size-dependent optical and electronic properties and their potential application as building blocks, interconnects and functional components for assembling nanodevices. Significant progress has been made; however, the strict control of the distinctive geometry at extremely small size for 1D structures remains a great challenge in this field. The anisotropic nature of cylindrical polymer brushes has been applied to template 1D nanostructured materials, such as metal, semiconductor or magnetic nanowires. Here, by constructing the cylindrical polymer brushes themselves with a precursor-containing monomer, we successfully synthesized hybrid nanowires with a silsesquioxane core and a shell made up from oligo(ethylene glycol) methacrylate units, which are soluble in water and many organic solvents. The length and diameter of these rigid wires are tunable by the degrees of polymerization of both the backbone and the side chain. They show lyotropic liquid-crystalline behaviour and can be pyrolysed to silica nanowires. This approach provides a route to the controlled fabrication of inorganic or hybrid silica nanostructures by living polymerization techniques.  相似文献   

11.
This study presents a novel approach for indirect integration of InAs nanowires on 2' Si substrates. We have investigated and developed epitaxial growth of InAs nanowires on 2' Si substrates via the introduction of a thin yet high-quality InAs epitaxial layer grown by metalorganic vapor phase epitaxy. We demonstrate well-aligned nanowire growth including precise position and diameter control across the full wafer using very thin epitaxial layers (<300 nm). Statistical analysis results performed on the grown nanowires across the 2' wafer size verifies our full control on the grown nanowire with 100% growth yield. From the crystallographic viewpoint, these InAs nanowires are predominantly of wurtzite structure. Furthermore, we show one possible device application of the aforementioned structure in vertical wrap-gated field-effect transistor geometry. The vertically aligned InAs nanowires are utilized as transistor channels and the InAs epitaxial layer is employed as the source contact. A high uniformity of the device characteristics for numerous transistors is further presented and RF characterization of these devices demonstrates an f(t) of 9.8 GHz.  相似文献   

12.
A novel method of indirect deposition by means of a focused ion beam (FIB) is utilized to develop metal/insulator/semiconductor nanowire core-shell structures. This method is based upon depositing an annular pattern centered on a nanowire, with secondary deposition then coating the wire. Typical cross-sectional deposition area increments as a function of ion doses are 1.3 × 10(-2)?μm(2)?nC(-1) for Pt and 3.5 × 10(-2)?μm(2)?nC(-1) for SiO(2). The structures are examined with a transmission electron microscope (TEM) using a new nanowire TEM sample preparation method that allows direct examinations of individually selected core-shell nanowires fabricated under different indirect FIB deposition conditions. Elemental analyses by means of energy dispersive x-ray spectroscopy and electron energy filtered TEM imaging verify the deposition of SiO(2) and Pt layers. Relatively uniform Pt and SiO(2) coatings on individual GaP nanowires can be achieved with overall thickness deviation of about 10% for deposition up to 25-30?nm thick Pt or SiO(2) shells. It should be possible to extend this approach to any nanowire/nanotube system, and to a wide range of coatings in any desired layer sequences.  相似文献   

13.
We show how a scanning probe microscope (SPM) can be used to image electron flow through InAs nanowires, elucidating the physics of nanowire devices on a local scale. A charged SPM tip is used as a movable gate. Images of nanowire conductance versus tip position spatially map the conductance of InAs nanowires at liquid-He temperatures. Plots of conductance versus backgate voltage without the tip present show complex patterns of Coulomb-blockade peaks. Images of nanowire conductance identify their source as multiple quantum dots formed by disorder along the nanowire--each dot is surrounded by a series of concentric rings corresponding to Coulomb blockade peaks. An SPM image locates the dots and provides information about their size. In this way, SPM images can be used to understand the features that control transport through nanowires. The nanowires were grown from metal catalyst particles and have diameters approximately 80 nm and lengths 2-3 microm.  相似文献   

14.
For advanced device applications, increasing the compositional abruptness of axial heterostructured and modulation doped nanowires is critical for optimizing performance. For nanowires grown from metal catalysts, the transition region width is dictated by the solute solubility within the catalyst. For example, as a result of the relatively high solubility of Si and Ge in liquid Au for vapor-liquid-solid (VLS) grown nanowires, the transition region width between an axial Si-Ge heterojunction is typically on the order of the nanowire diameter. When the solute solubility in the catalyst is lowered, the heterojunction width can be made sharper. Here we show for the first time the systematic increase in interface sharpness between axial Ge-Si heterojunction nanowires grown by the VLS growth method using a Au-Ga alloy catalyst. Through in situ tailoring of the catalyst composition using trimethylgallium, the Ge-Si heterojunction width is systematically controlled by tuning the semiconductor solubility within a metal Au-Ga alloy catalyst. The present approach of alloying to control solute solubilities in the liquid catalyst may be extended to increasing the sharpness of axial dopant profiles, for example, in Si-Ge pn-heterojunction nanowires which is important for such applications as nanowire tunnel field effect transistors or in Si pn-junction nanowires.  相似文献   

15.
One of the unique features of nanomaterials is that they have large surface-to-volume atom ratios compared to bulk materials. The intrinsic compressive stress along the nanowire axis can be as large as tens of GPa, and spontaneous reorientation or phase transformation may occur in order for the nanowires to return to the low-energy state. Upon tensile loading, the nanowires can revert back to the original high-energy orientation or phase without introducing any defects. Two mechanisms are mainly involved in the deformation: (1) twinning/detwinning and (2) stress-induced martensitic phase transformation (MT)/inverse MT. Generally, this surface-induced behavior can only occur at a temperature higher than the critical temperature, Tc, due to the energy barrier for structural transformation. As a result, ordinary nanoscale metals can exhibit pseudo-elasticity and shape memory effects previously only observed from special alloys such as nickel titanium (NiTi). These nanowires have the predicted recoverable strain on the order of 40%–70% which is much larger than that of bulk NiTi (5%–10%), but have extremely low energy dissipation (2% for W nanowires, for example). Surface-induced structural transformation has been observed from fcc, bcc, and hcp single-element metal nanowires, intermetallic alloy nanowires, multilayered and core-shell composite nanowires, and even oxide and nitride compound semiconductor nanowires. This unique phenomenon enables the design of novel and flexible nanoelectromechanical systems (NEMS) having potential applications in nanomanipulators, energy storage, sensors, switches, and so on. We will review the breakthrough and development in this field in the past ten years, mainly focusing on the physical mechanisms and dominant factors governing this spontaneous structural transition. Future developments will also be discussed.  相似文献   

16.
Liu M  Chen Y  Guo Q  Li R  Sun X  Yang J 《Nanotechnology》2011,22(12):125302
Assembly and alignment of nanowires or nanotubes are critical steps for integrating functional nanodevices by the bottom-up strategy. However, it is still challenging to manipulate either an array of nanowires or individual nanowires in a controllable manner. Here we present a simple but versatile method of positioning and aligning nanowires by hydrodynamic focusing that functions as 'hydro-tweezers'. By adjusting the flow duration and flow rates of the sheath flows and sample flow, the density, width and position of the nanowire arrays, as building blocks of nanodevices, can be readily tuned in the hydrodynamic focusing process. This approach exhibits great potentials in the assembly of an array of functional nanodevices. With this method, multiple nanowire arrays can be positioned and aligned on predefined locations. Further focusing the sample flow, nanowires flow in single file. Thus single nanowires can also be lined up and located to desired positions.  相似文献   

17.
Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems.  相似文献   

18.
High aspect ratios are highly desired to fully exploit the one-dimensional properties of indium antimonide nanowires. Here we systematically investigate the growth mechanisms and find parameters leading to long and thin nanowires. Variation of the V/III ratio and the nanowire density are found to have the same influence on the "local" growth conditions and can control the InSb shape from thin nanowires to nanocubes. We propose that the V/III ratio controls the droplet composition and the radial growth rate and these parameters determine the nanowire shape. A sweet spot is found for nanowire interdistances around 500 nm leading to aspect ratios up to 35. High electron mobilities up to 3.5 × 10(4) cm(2) V(-1) s(-1) enable the realization of complex spintronic and topological devices.  相似文献   

19.
Akiyama T  Yamashita T  Nakamura K  Ito T 《Nano letters》2010,10(11):4614-4618
The band alignments of twin-plane superlattices in semiconductor nanowires are systematically investigated on the basis of density functional calculations. Our calculations demonstrate that for nanowires with small diameters the quantum-confinement effect is prominent within wurtzite structure regions and the energy gap in wurtzite-structured nanowires is remarkably larger than that including zinc-blende structure. This results in the straddling band alignment, in which both electrons and holes are confined in zinc-blende structure region. The analysis using a simple tight-binding methods also clarifies that the straddling band alignments can be realized when the diameters of nanowires are less than 4-8 nm, leading to full control of band alignments by varying the nanowire diameter. Our results provide the ability of band-alignment tuning and open new possibilities for band engineering.  相似文献   

20.
The synthesis of semiconductor nanowires has been studied intensively worldwide for a wide spectrum of materials. Such low-dimensional nanostructures are not only interesting for fundamental research due to their unique structural and physical properties relative to their bulk counterparts, but also offer fascinating potential for future technological applications. Deeper understanding and sufficient control of the growth of nanowires are central to the current research interest. This Review discusses the various growth processes, with a focus on the vapor-liquid-solid process, which offers an opportunity for the control of spatial positioning of nanowires. Strategies for position-controlled and nanopatterned growth of nanowire arrays are reviewed and demonstrated by selected examples as well as discussed in terms of larger-scale realization and future prospects. Issues on building up nanowire-based electronic and photonic devices are addressed at the end of the Review, accompanied by a brief survey of recent progress demonstrated so far on the laboratory level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号